- 结合创新idea:机器学习+运筹优化=CCF高端局
Ai多利
机器学习人工智能
2024深度学习发论文&模型涨点之——机器学习+运筹优化机器学习是人工智能的一个分支,它使计算机系统能够从数据中学习并改进其性能,而无需进行明确的编程。运筹优化,也称为运筹学或运营管理,是应用数学的一个分支,它使用数学模型和算法来支持复杂决策过程的制定。机器学习与运筹优化的结合是一个前沿且活跃的研究领域,它们相互补充,为解决复杂问题提供了新的思路和方法。小编整理了一些机器学习+运筹优化【论文+代码
- 在 .docx 中键入正确的数学符号
文章目录\not\perp...做项目需要使用.docx写复杂的数学公式。虽然Word和WPS都已经支持LaTex代码,但是支持的很差劲(╬ ̄皿 ̄),许多符号无法生成。\not\perp为了输入⊥̸\not\perp⊥符号,需要依次执行:插入-符号字体:CambriaMath插入Unicode+22A5(⊥\perp⊥符号)插入Unicode+0338(⋅̸\not\sdot⋅组合符号)…
- 【刚考完的真题】2025年全国青少年信息素养大赛—图形化编程挑战赛-复赛/省赛真题(小高组)——谢尔宾斯基地毯
部分地区的信息素养大赛图形化复赛已考完,还没考的小伙伴可以去做做,看看难度如何~谢尔宾斯基地毯谢尔宾斯基是波兰的一名数学家,他发现了一种“自相似”的图形——谢尔宾斯基地毯,构造方法如下:(1)取一个实心的正方形(2)将其划分为9个相等的小正方形(3)移除中间的小正方形,留下周围的8个小正方形(4)对这8个小正方形重复上述操作,每次迭代都会让结构变得更加复杂。具体要求对画笔进行编程,不要对画笔的初始
- 【动态规划】一次性整理子序列问题题型系列,八个例题实战详细解析 (包含我自己精心整理的动态规划解题思路)
ngioig
动态规划leetcode算法职场和发展后端
前言最近刷了子序列系列的题型,一共八个力扣题,这里对子序列问题进行一个简单的总结,全是动态规划的解法,当然里边有些题选有更优的解法。1.动态规划解题思路动态规划(DynamicProgramming,DP)是一种在计算机科学和数学中用于解决最优化问题的方法。它特别适用于可以分解为互相重叠的子问题的问题,并且这些子问题的解可以被存储起来以避免重复计算,从而提高效率。首先,我们要熟悉动态规划的套路也要
- happy-llm 第二章 Transformer架构
weixin_38374194
transformer深度学习人工智能学习
文章目录一、注意力机制核心解析1.1注意力机制的本质与核心变量1.2注意力机制的数学推导1.3注意力机制的变种实现1.3.1自注意力(Self-Attention)1.3.2掩码自注意力(MaskedSelf-Attention)1.3.3多头注意力(Multi-HeadAttention)二、Encoder-Decoder架构详解2.1Seq2Seq任务与架构设计2.2核心组件解析2.2.1前馈
- 九章数学体系开源工程白皮书
《九章数学体系开源工程白皮书》前言:从公理冲突到场景适配的计算革命传统计算系统深陷“体系冲突陷阱”:阿基米德体系以“无穷可分”“绝对无穷不可达”为公理,适合描述开域,然而,99%以上的物理闭域场景(如星系边界、原子结构)是闭域。因“开域无穷假设”与“闭域有限性”的本质矛盾,必然产生类似芝诺悖论的逻辑错误——暗物质谜题、量子叠加态的概率描述、高维空间假设,本质上都是这种“公理-场景错配”的产物。如同
- Python pip配置全局镜像源
Python编程之道
Python人工智能与大数据Python编程之道pythonpip网络ai
Pythonpip配置全局镜像源关键词:Python、pip、全局镜像源、配置、国内镜像摘要:本文详细介绍了Python中pip配置全局镜像源的相关内容。首先阐述了配置全局镜像源的背景和目的,接着解释了核心概念,包括pip和镜像源的原理。然后详细说明了配置全局镜像源的具体操作步骤,包括不同操作系统下的配置方法,并给出了相应的Python代码示例。同时,还讲解了相关的数学模型(虽然在本主题中数学模型
- 面向高校的人工智能通识教育课程实验设计方案
武汉唯众智创
人工智能人工智能通识教育课程实验人工智能通识教育人工智能通识课程人工智能通识
一、前言2018年,教育部发布《高等学校人工智能创新行动计划》,明确提出“重视人工智能与计算机、控制、数学、统计学、物理学、生物学、心理学、社会学、法学等学科专业教育的交叉融合,探索‘人工智能+X’的人才培养模式”。过去,人工智能教育多集中于研究生阶段,本科生接触机会相对有限。2019年,教育部批准35所高校增设“人工智能”本科专业,这标志着人工智能正式纳入本科教育体系。如今,人工智能课程大多是计
- 分布式领域后端服务的限流算法实现
大厂资深架构师
SpringBoot开发实战分布式算法wpfai
分布式领域后端服务的限流算法实现关键词:分布式系统、限流算法、令牌桶、漏桶、滑动窗口、Redis、高并发摘要:本文深入探讨分布式系统中后端服务的限流算法实现。我们将从基础概念出发,详细分析各种限流算法的原理和适用场景,包括计数器算法、滑动窗口算法、令牌桶算法和漏桶算法。文章将提供Python实现代码和数学建模,并通过实际案例展示如何在分布式环境中使用Redis实现高效的限流机制。最后,我们将讨论限
- 隐形水印嵌入技术详解
参考资料HTML文本对齐方式HTML符号实体HTML用于联系信息的HTML用于著作标题的HTML有序列表HTML注释HTML表格表头单元格HTML数学符号隐形水印嵌入技术详解(含HTML代码示例)1.图片水印技术1.1频域水印(DCT变换)//使用canvas处理图像functionembedDCTWatermark(imageData,watermarkText){constblockSize=
- java鸡兔同笼代码
【聚创网】源码分享
java开发语言
鸡兔同笼问题是一个经典的数学问题,可以用Java编写一个程序来解决。以下是一个简单的Java代码示例:importjava.util.Scanner;publicclassChickenRabbit{publicstaticvoidmain(String[]args){Scannerscanner=newScanner(System.in);System.out.println("请输入头的数量:
- LeetCode643. 子数组最大平均数 I
题目分析本题要求找出一个长度为k的连续子数组,使其平均值最大。由于平均值由子数组和决定,问题转化为寻找最大子数组和(再除以k)。解题思路滑动窗口技巧:先计算第一个窗口(0到k-1)的元素和。将窗口向右滑动(每次移动一位):减去窗口左侧离开的元素加上窗口右侧新增的元素在滑动过程中记录窗口和的最大值。数学优化:平均值=窗口和/k最大化平均值⇨最大化窗口和最终结果=最大窗口和÷k(注意转换为double
- GPT在AI原生应用领域的无限潜力
GPT在AI原生应用领域的无限潜力关键词:GPT、AI原生应用、自然语言处理、无限潜力、应用场景摘要:本文深入探讨了GPT在AI原生应用领域所展现出的无限潜力。首先介绍了相关背景知识,包括GPT的基本概念和AI原生应用的定义。接着详细解释了GPT的核心概念,以及它与AI原生应用的紧密联系。通过数学模型和公式对GPT的工作原理进行了阐述,并给出了实际的代码案例。还探讨了GPT在多个实际应用场景中的表
- NumPy-核心函数np.matmul()深入解析
GG不是gg
numpynumpy
NumPy-核心函数np.matmul深入解析一、矩阵乘法的本质与`np.matmul()`的设计目标1.数学定义:从二维到多维的扩展2.设计目标二、`np.matmul()`核心语法与参数解析函数签名核心特性三、多维场景下的核心运算逻辑1.二维矩阵乘法:基础用法2.一维向量与二维矩阵相乘3.高维数组:批次矩阵乘法4.广播机制下的形状匹配四、与`np.dot()`和`*`运算符的核心区别1.对比`
- c语言——数组
晚云与城
c语言算法数据结构
目录1.数组的概念2.⼀维数组的创建和初始化3.⼀维数组的使用4.⼀维数组在内存中的存储5.sizeof计算数组元素个数6.⼆维数组的创建7.⼆维数组的初始化8.⼆维数组的使用9.⼆维数组在内存中的存储10.C99中的变长数组1.数组的概念数组是一组相同类型元素的集合(能与数学中的集合联想起来理解)。主要目的之一是能够批量存储多个相同类型的数据,让其更容易解决批量操作的问题。1.放1个或多个数据,
- 深度学习前置知识全面解析:从机器学习到深度学习的进阶之路
一、引言:人工智能时代的核心技术在当今这个数据爆炸的时代,人工智能(AI)已经成为推动社会进步的核心技术之一。作为AI领域最重要的分支,深度学习(DeepLearning)在计算机视觉、自然语言处理、语音识别等领域取得了突破性进展,彻底改变了我们与机器交互的方式。本教案将从机器学习的基础知识出发,系统性地介绍深度学习的核心概念、数学基础、网络架构和训练方法,为读者构建完整的知识体系框架。无论你是刚
- 深入解析VAE:从理论到PyTorch实战,一步步构建你的AI“艺术家”
电脑能手
人工智能深度学习python
摘要:你是否好奇AI如何“凭空”创造出从未见过的人脸或画作?变分自编码器(VAE)就是解开这一谜题的关键钥匙之一。本文将带你从零开始,深入浅出地剖析VAE的迷人世界。我们将用生动的比喻解释其核心思想,拆解其背后的数学原理(KL散度与重参数技巧),并最终用PyTorch代码手把手地构建、训练和可视化一个完整的VAE模型。无论你是初学者还是有一定经验的开发者,相信这篇文章都能让你对生成模型有一个全新的
- 【字节跳动】数据挖掘面试题0006:SVM(支持向量机)详细原理
言析数智
数据挖掘常见面试题支持向量机数据挖掘算法SVM
文章大纲SVM(支持向量机)原理:用最通俗的话讲清楚1.核心思想:找一条“最安全”的分界线2.数学背后的“人话”逻辑3.处理“分不开”的情况:核函数的魔法4.为什么SVM有时比神经网络“聪明”?`5.SVM的优缺点:适合什么场景?`6.一句话总结SVM7.SVM常见的面试知识点除了原理相关内容外**1.硬间隔SVM的数学表达****2.软间隔SVM的数学表达****3.拉格朗日对偶问题推导****
- RabbitMQ消息队列在大数据系统中的实战应用案例
AI天才研究院
AI大模型企业级应用开发实战AgenticAI实战AI人工智能与大数据rabbitmq分布式ai
RabbitMQ消息队列在大数据系统中的实战应用案例关键词:RabbitMQ、消息队列、大数据系统、实战案例、高并发处理、分布式架构、数据管道摘要:本文深入探讨RabbitMQ消息队列在大数据系统中的核心应用场景,结合具体技术实现和实战案例,详细解析其在数据采集、实时处理、异步解耦等关键环节的技术优势。通过架构设计原理、核心算法实现、数学模型分析和项目实战,展示如何利用RabbitMQ构建高可靠、
- 牛客周赛 Round 59(思维、构造、数论)
mldl_
数据结构与算法算法数论逆序数构造对角线处理范德蒙恒等式
文章目录牛客周赛Round59(思维、构造、数论)A.TDB.你好,这里是牛客竞赛C.逆序数(思维)D.构造mex(构造)E.小红的X型矩阵F.小红的数组回文值(数论、范德蒙恒等式)牛客周赛Round59(思维、构造、数论)E题,对于对角线的处理,常用。F题,范德蒙恒等式推论的应用。A.TD简单数学题。#includeusingnamespacestd;intmain(){doublen,m;ci
- 【深度学习】一文彻底搞懂前向传播(Forward Pass)与反向传播(Backward Pass)
烟锁池塘柳0
机器学习与深度学习深度学习人工智能机器学习
【深度学习】一文彻底搞懂前向传播(ForwardPass)与反向传播(BackwardPass)摘要:在深度学习的星辰大海中,无论模型多么复杂,其训练过程都离不开两大核心支柱:前向传播(ForwardPass)和反向传播(BackwardPass)。理解这两个概念,就等于拿到了解开神经网络训练奥秘的钥匙。本文将用最直白易懂的方式,并结合规范的数学表达,为你彻底讲透这两个基本而又重要的过程。文章目录
- 【Pytorch学习笔记(三)】张量的运算(2)
一、引言在《张量的运算(1)》中我们已经学习了几种张量中常用的非算数运算如张量的索引与切片,张量的拼接等。本节我们继续学习张量的算术运算。二、张量的算术运算(一)对应元素的加减乘除在PyTorch中,张量的对应元素的算术运算包括加法、减法、乘法、除法等常见的数学运算。这些运算可以对张量进行逐元素操作(element-wise),也可以进行张量之间的广播运算(broadcasting)。1.逐元素操
- TensorFlow 零基础入门:手把手教你跑通第一个AI模型
蓑笠翁001
人工智能人工智能tensorflowpython机器学习深度学习分类
今天用最直白的语言,带完全零基础的同学走进TensorFlow的世界。不用担心数学公式,先学会"开车",再学"造车"!1.准备工作:安装TensorFlow就像玩游戏需要先安装游戏客户端一样,我们需要先安装TensorFlow。打开你的电脑(Windows/Mac都行),按下Win+R,输入cmd打开命令提示符,然后输入:pipinstalltensorflow看到"Successfullyins
- gesp c++ 七级知识点
以下是根据GESPC++七级考试大纲的超详细知识点解析与代码实现,涵盖数学函数、复杂动态规划、图论算法、哈希表等核心内容,每个知识点均包含概念说明、应用场景、使用方法、优缺点及完整代码示例。一、数学库函数1.1三角函数概念:sin(x)、cos(x)、tan(x)分别计算弧度为x的正弦、余弦、正切值。应用场景:几何计算、物理运动模拟、图形学。代码示例:#include#includeusingna
- 数学视频动画引擎Python库 -- Manim Voiceover 安装 Installation
文中内容仅限技术学习与代码实践参考,市场存在不确定性,技术分析需谨慎验证,不构成任何投资建议。ManimVoiceover是一个为Manim打造的专注于语音旁白的插件:直接在Python中添加语音旁白:无需使用视频编辑器,即可为Manim视频添加语音旁白。在渲染期间录制旁白:通过简单的命令行界面(参见RecorderService),可使用麦克风在渲染过程中录制语音旁白。使用AI生成旁白:利用多种
- 【Python打卡Day48】随机张量与广播机制@浙大疏锦行
可能是猫猫人
Python打卡训练营内容python开发语言
在继续讲解模块消融前,先补充几个之前没提的基础概念尤其需要搞懂张量的维度、以及计算后的维度,这对于你未来理解复杂的网络至关重要一、随机张量的生成在深度学习中经常需要随机生成一些张量,比如权重的初始化,或者计算输入纬度经过模块后输出的维度,都可以用一个随机函数来实现需要的张量格式,而无需像之前一样必须加载一张真实的图片。“张量”概念它听起来可能有点抽象,但在数学和物理学(尤其是广义相对论、连续介质力
- 数学视频动画引擎Python库 -- Manim Voiceover 快速入门 Quickstart
文中内容仅限技术学习与代码实践参考,市场存在不确定性,技术分析需谨慎验证,不构成任何投资建议。ManimVoiceover是一个为Manim打造的专注于语音旁白的插件:直接在Python中添加语音旁白:无需使用视频编辑器,即可为Manim视频添加语音旁白。在渲染期间录制旁白:通过简单的命令行界面(参见RecorderService),可使用麦克风在渲染过程中录制语音旁白。使用AI生成旁白:利用多种
- OpenGL: OpenGL+Qt实现介绍 (一)
程序员小马兰
OpenGL+Qt计算机视觉图形渲染前端
一、通过这个教程我们能学到什么?1、计算机图形学的基础知识。2、使用OpenGL在QT中进行编程。3、使用OpenGL做出一些很酷的效果。二、需要哪些预备知识?1、熟悉C++编程语言、Qt基本操作。2、数学基础知识(线性代数、几何、三角学)。三、为什么要学习OpenGL?各种三维图形引擎,原理都类似,几乎没什么差别,学好了OpenGL对Unity3D、虚幻引擎、OSG、webGL等的使用都会有巨大
- MOBILEVIT: 轻量级、通用且适用于移动设备的视觉Transformer
AI专题精讲
Paper阅读transformer深度学习人工智能计算机视觉
摘要轻量级卷积神经网络(CNN)是移动视觉任务的事实标准。它们的空间归纳偏置使得它们能够在不同的视觉任务中以较少的参数学习表示。然而,这些网络在空间上是局部的。为了学习全局表示,基于自注意力的视觉Transformer(ViT)被采用。与CNN不同,ViT是重量级的。本文提出了以下问题:是否有可能将CNN和ViT的优势结合起来,构建一个适用于移动视觉任务的轻量级低延迟网络?为此,我们介绍了Mobi
- PID算法的一点改进思路
在PID算法里面有三个系数Kp,Ki,Kd;其中Kp是比例常数,Ki是积分常数,Kd是微分常数。Kp比例常数可以控制被控制量变化速度,越大控制越快但是越容易引发系统震荡,越小控制又比较慢;Ki比例常数是控制稳态误差(系统稳态的时候控制量不一定等于设置量);Kd比例常数可预测控制量变化趋势。图是蛋糕达人的。从积分的数学理解上可以知道系统稳态的时候红色部分面积与蓝色部分面积应该相等,但是系统从一开始并
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla