- Gemini vs DeepSeek:Transformer 架构下的技术路线差异与企业级选择
charles666666
transformer架构深度学习语言模型产品经理人工智能
一、引言:从商业价值切入Gemini和DeepSeek都基于Transformer架构,但在技术路线和应用场景上各有侧重。本文将解密同源Transformer下的技术分野,帮助企业做出更明智的大模型选型决策。二、Transformer核心机制精要Transformer架构是现代大语言模型的基础,其核心机制包括自注意力机制和前馈神经网络。自注意力机制使模型能够捕捉序列中元素的全局依赖关系,但也是GP
- 【动手学深度学习】4.10 实战Kaggle比赛:预测房价
XiaoJ1234567
《动手学深度学习》深度学习人工智能
目录4.10实战Kaggle比赛:预测房价1)数据预处理2)模型定义与训练3)模型评估与预测4)模型训练与预测提交5)示例超参数(可调)4.10实战Kaggle比赛:预测房价数据来源:Kaggle房价预测比赛.1)数据预处理读取数据importpandasaspdtrain_data=pd.read_csv('../data/kaggle_house_pred_train.csv')test_da
- PyTorch 在 Python 自然语言处理中的运用
Python编程之道
Python编程之道pythonpytorch自然语言处理ai
PyTorch在Python自然语言处理中的运用关键词:PyTorch,Python,自然语言处理,深度学习,文本分类,情感分析摘要:本文全面探讨了PyTorch在Python自然语言处理(NLP)领域的运用。首先介绍了相关背景知识,包括目的范围、预期读者等内容。接着详细阐述了核心概念,如词嵌入、循环神经网络等,并给出了相应的原理示意图和流程图。深入讲解了核心算法原理,结合Python代码进行详细
- 神经网络初步学习3——数据与损失
X Y O
神经网络学习人工智能
一、传统机器学习与神经网络前言:该部分需要一定的机器学习与数学基础(很浅的基础),如果有不理解的地方可以自行查阅。(1)区别这里不妨以图像识别为例子:(1)在传统的机器学习视角中:我们需要人工手动去设置并提取我们的特征量,例如常见的SIFT、SURF和HOG等,随后需要我们选择合适的分类器(例如:SVM、KNN等分类器),接着把我们的参数训练出来。(2)而在神经网络的视角中:我们只需要把图片喂给它
- 量化价值投资中的深度学习技术:TensorFlow实战
量化价值投资中的深度学习技术:TensorFlow实战关键词:量化价值投资,深度学习,TensorFlow,股票预测,因子模型,LSTM神经网络,量化策略摘要:本文将带你走进"量化价值投资"与"深度学习"的交叉地带,用小学生都能听懂的语言解释复杂概念,再通过手把手的TensorFlow实战案例,教你如何用AI技术挖掘股票市场中的价值宝藏。我们会从传统价值投资的痛点出发,揭示深度学习如何像"超级分析
- Spring Data Neo4j 与后端人工智能算法的数据交互
AI大模型应用实战
springneo4j人工智能ai
SpringDataNeo4j与后端人工智能算法的数据交互关键词:SpringDataNeo4j、图数据库、人工智能算法、数据交互、知识图谱、图神经网络、数据集成摘要:本文深入探讨了如何利用SpringDataNeo4j框架实现后端人工智能算法与图数据库的高效数据交互。文章首先介绍了图数据库和人工智能算法的基本概念,然后详细解析了SpringDataNeo4j的核心架构和原理。接着,通过实际代码示
- ResNet:深度卷积神经网络的里程碑
心想事“程”
小知识点cnn人工智能神经网络
一、引言在深度学习的发展历程中,深度卷积神经网络(CNN)不断演进,旨在提升对图像等数据的特征提取与分类能力。然而,随着网络层数的增加,传统CNN面临着梯度消失、梯度爆炸以及退化等棘手问题,训练变得愈发困难。2015年,由微软研究院提出的ResNet(ResidualNetworks,残差网络)横空出世,它以独特的残差学习思想,成功攻克了这些难题,在ImageNet竞赛中大放异彩,开创了深度神经网
- 视觉算法之卷积神经网络
清风AI
深度学习算法详解及代码复现计算机视觉cnn神经网络深度学习python课程设计毕业设计
定义与特点卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种专为处理具有网格结构的数据而设计的深度学习模型。其独特的结构和功能使其在图像处理、语音识别等领域展现出卓越的性能:CNN的核心设计理念源于对生物视觉系统的模仿。通过模拟大脑皮层中视网膜和视觉皮层的层次化结构,CNN能够有效地捕捉图像中的局部特征并逐步抽象为高层语义信息。这种设计使得CNN特别擅长处理图像和音
- 卷积神经网络架构的演进:从AlexNet到EfficientNet
t0_54manong
大数据与人工智能cnn架构人工智能个人开发
在过去的8.5年里,深度学习取得了飞速的进步。回溯到2012年,AlexNet在ImageNet上的Top-1准确率仅为63.3%,而如今,借助EfficientNet架构和师生训练法,我们已经能达到超过90%的准确率。本文将聚焦于卷积神经网络(CNN)架构的演变,深入探究其背后的基本原理。一些关键术语在深入了解各种架构之前,我们需要明确几个关键术语。更宽的网络意味着卷积层中有更多的特征图(滤波器
- 一文搞懂 Cursor 内部工作原理~
zz_jesse
介绍了Cursor,一个结合了AI技术的代码编辑器,它通过深度学习和语义索引的方式,提升了开发者的工作效率。Cursor通过与VSCode相似的界面和功能,以及自己的AI特性,实现了代码的智能化编辑和错误检查。译文从这开始~~你可能已经看到新闻:OpenAI正以高达30亿美元的价格收购Windsurf!与此同时,Cursor的母公司Anysphere也正在以90亿美元估值融资9亿美元!这对于代码生
- 开源人工神经网络库(OpenANN)
deepdata_cn
人工智能神经网络
OpenANN(OpenANN,OpenArtificialNeuralNetworkLibrary)是一个开源的人工神经网络库,基于C++编写,依赖Eigen3库进行高效的矩阵运算,使用CMake进行项目构建,支持多种神经网络架构,包括前馈神经网络、卷积神经网络和循环神经网络等,适用于图像识别、自然语言处理、时间序列预测等多种场景。提供数据预处理、模型保存和加载、超参数优化等功能。支持GPU加速
- 目标检测YOLO实战应用案例100讲-基于深度学习的自动驾驶目标检测算法研究(续)
林聪木
目标检测YOLO深度学习
目录基于双蓝图卷积的轻量化自动驾驶目标检测算法5.1引言5.2DarkNet53网络冗余性分析5.3双蓝图卷积网络5.4实验结果及分析基于深度学习的自动驾驶目标检测算法研究与应用传统的目标检测算法目标检测基线算法性能对比与选择相关理论和算法基础2.1引言2.2人工神经网络2.3FCOS目标检测算法2.4复杂交通场景下的目标检测难点与FCOS改进方案基于FCOS的目标检测算法改进3.1引言3.2Re
- AI人工智能遇上TensorFlow:技术融合新趋势
AI大模型应用之禅
人工智能tensorflowpythonai
AI人工智能遇上TensorFlow:技术融合新趋势关键词:人工智能、TensorFlow、深度学习、神经网络、机器学习、技术融合、AI开发摘要:本文深入探讨了人工智能技术与TensorFlow框架的融合发展趋势。我们将从基础概念出发,详细分析TensorFlow在AI领域的核心优势,包括其架构设计、算法实现和实际应用。文章包含丰富的技术细节,如神经网络原理、TensorFlow核心算法实现、数学
- 深度学习核心知识简介和模型调参
研术工坊
深度学习知识和技巧深度学习人工智能python
深度学习模型调优就像调制一道复杂的菜肴,需要掌握多种"调料"的用法。本文将为您详解这些关键"调料",帮助您烹饪出高性能的模型。###核心参数及其影响####1️⃣Loss(损失函数)**基本介绍**:衡量模型预测与真实值差距的指标,是模型优化的指南针。**生活类比**:想象你在教小孩认识动物:-**完美情况**:小孩看到猫说"猫",看到狗说"狗"→Loss=0-**有错误**:小孩看到猫说"狗"→
- 【小白入门必看】一文读懂深度学习计算机视觉技术及学习路线
一、什么是计算机视觉?计算机视觉,其实就是教机器怎么像我们人一样,用摄像头看看周围的世界,然后理解它。比如说,它能认出这是个苹果,或者那边有辆车。除此之外,还能把拍到的照片或者视频转换成有用的信息,帮我们做决定。整个过程就是为了让机器能看懂图像,然后根据这些图像来做出聪明的选择。二、计算机视觉实现起来难吗?人类依赖视觉,找辆汽车轻而易举,毕竟汽车那么大,一眼就能看出来,所以常误以为计算机视觉简单,
- 2025年跑深度学习电脑配置-深度学习显卡推荐
OpenCV图像识别
人工智能深度学习智能电视人工智能
2025年跑深度学习任务,电脑配置需从处理器、内存、显卡、存储、散热与电源、扩展性、网络连接等多方面综合考量,以下是具体分析:处理器(CPU)多核高性能:深度学习涉及大量并行计算任务,需要处理器具备强大的多核处理能力。英特尔至强Scalable处理器(SapphireRapids或后续架构)和AMDEPYC处理器(Genoa或后续架构)是不错的选择。英特尔至强Scalable处理器提供卓越的单核性
- 【零基础学AI】第30讲:生成对抗网络(GAN)实战 - 手写数字生成
1989
0基础学AI人工智能生成对抗网络神经网络python机器学习近邻算法深度学习
本节课你将学到GAN的基本原理和工作机制使用PyTorch构建生成器和判别器DCGAN架构实现技巧训练GAN模型的实用技巧开始之前环境要求Python3.8+需要安装的包:pipinstalltorchtorchvisionmatplotlibnumpyGPU推荐(可大幅加速训练)前置知识第21讲TensorFlow基础第23讲神经网络原理基本PyTorch使用经验核心概念什么是GAN?GAN就像
- 【深度学习第六期深度学习中的归一化与正则化技术:原理、实践与应用】
码上有前
Python深度学习Pytorch深度学习人工智能cnn
作者:“码上有前”文章简介:深度学习欢迎小伙伴们点赞、收藏⭐、留言深度学习中的归一化与正则化技术:原理、实践与应用摘要:本文深入探讨深度学习中批量归一化(BN)、层归一化(LN)、标准化以及正则化等关键技术。详细阐述它们的基本原理,包括如何调整数据分布、控制模型复杂度等;通过丰富的实例和对应代码,展示在不同网络架构中这些技术的具体实现方式,以及对模型训练和性能的影响;同时,对比分析各项技术的特点和
- 10、 量子神经网络:从理论到实践
安检
量子神经网络PennyLaneQiskit
量子神经网络:从理论到实践1.量子神经网络简介量子神经网络(QuantumNeuralNetworks,QNNs)是量子计算与经典机器学习相
- 深度神经网络课程设计:从理论到实践
Vita Libre
本文还有配套的精品资源,点击获取简介:深度神经网络是深度学习预测的核心技术,本课程设计项目旨在教授学生如何构建和应用深度神经网络进行各种预测任务,包括图像识别和自然语言处理。学生将通过源代码示例学习从网络架构设计、数据预处理到模型训练与评估的完整流程,并掌握深度学习的基本概念、组件及技巧。1.深度神经网络定义和在深度学习预测中的角色深度神经网络(DeepNeuralNetworks,DNNs)是深
- 深度学习基础与应用:从理论到实战
创新工场
本文还有配套的精品资源,点击获取简介:深度学习是人工智能的核心分支,通过模拟人脑神经网络处理大量数据以执行复杂任务。Python因其简洁性和强大的库支持成为深度学习研究的首选语言。本文概述了深度学习基础概念、核心算法、Python框架,并假设了一个包含教程、示例代码、数据集、交互式学习环境、性能评估指标和进阶主题的“deep-learning-study-main”压缩包内容,旨在帮助学习者深入理
- 深层神经网络:原理与传播机制详解
网安spinage
深度学习神经网络人工智能机器学习深度学习
网络架构概述本文探讨的深层神经网络结构如下:输入层:3个神经元第一隐藏层:5个神经元第二隐藏层:5个神经元第三隐藏层:3个神经元输出层:1个神经元输出层隐藏层3隐藏层2隐藏层1输入层输出神经元3.1神经元3.2神经元3.3神经元2.1神经元2.2神经元2.3神经元2.4神经元2.5神经元1.1神经元1.2神经元1.3神经元1.4神经元1.5输入1输入2输入3数学符号定义符号含义维度XXX输入数据3
- 大模型与智能体:螺旋共生,绘就智能新蓝图
东锋17
人工智能大模型智能体人工智能
大模型与智能体:螺旋共生,绘就智能新蓝图在人工智能的前沿领域,大模型与智能体宛如两颗璀璨的星辰,以一种精妙的螺旋共生关系,重塑着智能世界的格局,深刻影响着我们生活与工作的方方面面。大模型:构筑智能大厦的基石大语言模型,像广为人知的GPT-4、通义千问等,凭借在海量数据中深度学习的锤炼,展现出卓越的语言理解与生成天赋。它们就像知识渊博的学者,能熟练应对各类自然语言任务。无论是洋洋洒洒的文章创作,还是
- 深度学习之迁移学习
路溪非溪
人工智能迁移学习机器学习
认识迁移学习迁移学习(TransferLearning)是机器学习中的一种重要技术,其核心思想是将在一个任务上学习到的知识(模型参数、特征表示等),迁移应用到另一个相关但不同的任务中,从而提升新任务的学习效率和性能,尤其是在新任务数据有限的情况下。一、迁移学习的核心动机传统机器学习通常要求为每个新任务收集大量标注数据并从头训练模型,但现实中面临以下挑战:数据稀缺:例如医疗影像分析(罕见疾病样本少)
- 【深度学习-Day 35】实战图像数据增强:用PyTorch和TensorFlow扩充你的数据集
吴师兄大模型
深度学习入门到精通深度学习pytorchtensorflow人工智能python大模型LLM
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- 【深度学习】【入门】Linear和flatten
学习中的阿陈
深度学习人工智能
1.Linear1.Linear的概念Linear层,通常也被称为全连接层,是神经网络中一种经典且基础的层结构。它的核心特点是每一个神经元都与上一层的所有神经元相连接,这种全连接的方式使得信息能够在层与层之间充分传递和整合2.Linear层的作用Linear层在神经网络中主要承担着特征整合与输出映射的重任。在经过卷积、池化等层提取出数据的局部特征后,Linear层能够将这些分散的局部特征进行整合,
- SUNDAE-一种称为“光谱剪枝”的技术来优化和压缩3DGS模型
huarzail
3DGS剪枝3d算法
清华大学人工智能产业研究院、伦敦帝国理工学院、北京航空航天大学、北京理工大学、中国科学院大学、香港中文大学(深圳)、中国电信人工智能研究院(TeleAI)EVOL实验室的研究人员联合推出了一种新的3D场景表示方法-SUNDAE,它通过一种称为“光谱剪枝”的技术来优化和压缩3D高斯溅射(3DGaussianSplatting,简称3DGS)模型,同时使用神经网络补偿来保持渲染质量。项目主页:SUND
- 魔都AI医疗哪家强?全景揭秘科技创新与未来钱景!
引言上海作为中国科技创新的先锋城市,正在AI医疗领域崭露头角。根据2024年12月的数据,上海拥有34家专注于AI药物研发的公司,占全国预临床研究的60%和临床试验的47%。这些公司利用深度学习、大语言模型(LLM)和计算机视觉等技术,革新药物发现、医疗影像分析和数据治理,推动医疗行业的智能化转型。从全球首个人工智能医院“AgentHospital”到AI驱动的诊断系统,上海的AI医疗生态正在重塑
- 粒子群算法的原理与实现示例
禺垣
人工智能算法粒子群算法群体智能优化算法
粒子群算法(ParticleSwarmOptimization,PSO)是一种基于群体智能的优化算法,由Kennedy和Eberhart于1995年提出,其灵感来源于鸟群觅食、鱼群游动等自然界中群体行为的协作与信息共享机制。该算法通过模拟群体中个体(粒子)的运动和信息交互,在解空间中搜索最优解,具有实现简单、收敛速度快、参数少等特点,被广泛应用于函数优化、神经网络训练、工程设计等领域。一、算法
- 深度学习基础2
TY-2025
深度学习深度学习人工智能
5.张量索引操作(1)索引操作行列索引列表索引print(data[[0,2],[1,2]])#返回(0,1),(2,2)两个位置的元素print(data[[[0],[1]],[1,2]])#返回0,1行的1,2列共4个元素范围索引print(data[:3,:2])#前3行前2列数据print(data[2:,:2])#第2行到最后的前2列数据布尔索引tensor([[0,7,6,5,9],[
- 集合框架
天子之骄
java数据结构集合框架
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- Table Driven(表驱动)方法实例
bijian1013
javaenumTable Driven表驱动
实例一:
/**
* 驾驶人年龄段
* 保险行业,会对驾驶人的年龄做年龄段的区分判断
* 驾驶人年龄段:01-[18,25);02-[25,30);03-[30-35);04-[35,40);05-[40,45);06-[45,50);07-[50-55);08-[55,+∞)
*/
public class AgePeriodTest {
//if...el
- Jquery 总结
cuishikuan
javajqueryAjaxWebjquery方法
1.$.trim方法用于移除字符串头部和尾部多余的空格。如:$.trim(' Hello ') // Hello2.$.contains方法返回一个布尔值,表示某个DOM元素(第二个参数)是否为另一个DOM元素(第一个参数)的下级元素。如:$.contains(document.documentElement, document.body); 3.$
- 面向对象概念的提出
麦田的设计者
java面向对象面向过程
面向对象中,一切都是由对象展开的,组织代码,封装数据。
在台湾面向对象被翻译为了面向物件编程,这充分说明了,这种编程强调实体。
下面就结合编程语言的发展史,聊一聊面向过程和面向对象。
c语言由贝尔实
- linux网口绑定
被触发
linux
刚在一台IBM Xserver服务器上装了RedHat Linux Enterprise AS 4,为了提高网络的可靠性配置双网卡绑定。
一、环境描述
我的RedHat Linux Enterprise AS 4安装双口的Intel千兆网卡,通过ifconfig -a命令看到eth0和eth1两张网卡。
二、双网卡绑定步骤:
2.1 修改/etc/sysconfig/network
- XML基础语法
肆无忌惮_
xml
一、什么是XML?
XML全称是Extensible Markup Language,可扩展标记语言。很类似HTML。XML的目的是传输数据而非显示数据。XML的标签没有被预定义,你需要自行定义标签。XML被设计为具有自我描述性。是W3C的推荐标准。
二、为什么学习XML?
用来解决程序间数据传输的格式问题
做配置文件
充当小型数据库
三、XML与HTM
- 为网页添加自己喜欢的字体
知了ing
字体 秒表 css
@font-face {
font-family: miaobiao;//定义字体名字
font-style: normal;
font-weight: 400;
src: url('font/DS-DIGI-e.eot');//字体文件
}
使用:
<label style="font-size:18px;font-famil
- redis范围查询应用-查找IP所在城市
矮蛋蛋
redis
原文地址:
http://www.tuicool.com/articles/BrURbqV
需求
根据IP找到对应的城市
原来的解决方案
oracle表(ip_country):
查询IP对应的城市:
1.把a.b.c.d这样格式的IP转为一个数字,例如为把210.21.224.34转为3524648994
2. select city from ip_
- 输入两个整数, 计算百分比
alleni123
java
public static String getPercent(int x, int total){
double result=(x*1.0)/(total*1.0);
System.out.println(result);
DecimalFormat df1=new DecimalFormat("0.0000%");
- 百合——————>怎么学习计算机语言
百合不是茶
java 移动开发
对于一个从没有接触过计算机语言的人来说,一上来就学面向对象,就算是心里上面接受的了,灵魂我觉得也应该是跟不上的,学不好是很正常的现象,计算机语言老师讲的再多,你在课堂上面跟着老师听的再多,我觉得你应该还是学不会的,最主要的原因是你根本没有想过该怎么来学习计算机编程语言,记得大一的时候金山网络公司在湖大招聘我们学校一个才来大学几天的被金山网络录取,一个刚到大学的就能够去和
- linux下tomcat开机自启动
bijian1013
tomcat
方法一:
修改Tomcat/bin/startup.sh 为:
export JAVA_HOME=/home/java1.6.0_27
export CLASSPATH=$CLASSPATH:$JAVA_HOME/lib/tools.jar:$JAVA_HOME/lib/dt.jar:.
export PATH=$JAVA_HOME/bin:$PATH
export CATALINA_H
- spring aop实例
bijian1013
javaspringAOP
1.AdviceMethods.java
package com.bijian.study.spring.aop.schema;
public class AdviceMethods {
public void preGreeting() {
System.out.println("--how are you!--");
}
}
2.beans.x
- [Gson八]GsonBuilder序列化和反序列化选项enableComplexMapKeySerialization
bit1129
serialization
enableComplexMapKeySerialization配置项的含义
Gson在序列化Map时,默认情况下,是调用Key的toString方法得到它的JSON字符串的Key,对于简单类型和字符串类型,这没有问题,但是对于复杂数据对象,如果对象没有覆写toString方法,那么默认的toString方法将得到这个对象的Hash地址。
GsonBuilder用于
- 【Spark九十一】Spark Streaming整合Kafka一些值得关注的问题
bit1129
Stream
包括Spark Streaming在内的实时计算数据可靠性指的是三种级别:
1. At most once,数据最多只能接受一次,有可能接收不到
2. At least once, 数据至少接受一次,有可能重复接收
3. Exactly once 数据保证被处理并且只被处理一次,
具体的多读几遍http://spark.apache.org/docs/lates
- shell脚本批量检测端口是否被占用脚本
ronin47
#!/bin/bash
cat ports |while read line
do#nc -z -w 10 $line
nc -z -w 2 $line 58422>/dev/null2>&1if[ $?-eq 0]then
echo $line:ok
else
echo $line:fail
fi
done
这里的ports 既可以是文件
- java-2.设计包含min函数的栈
bylijinnan
java
具体思路参见:http://zhedahht.blog.163.com/blog/static/25411174200712895228171/
import java.util.ArrayList;
import java.util.List;
public class MinStack {
//maybe we can use origin array rathe
- Netty源码学习-ChannelHandler
bylijinnan
javanetty
一般来说,“有状态”的ChannelHandler不应该是“共享”的,“无状态”的ChannelHandler则可“共享”
例如ObjectEncoder是“共享”的, 但 ObjectDecoder 不是
因为每一次调用decode方法时,可能数据未接收完全(incomplete),
它与上一次decode时接收到的数据“累计”起来才有可能是完整的数据,是“有状态”的
p
- java生成随机数
cngolon
java
方法一:
/**
* 生成随机数
* @author
[email protected]
* @return
*/
public synchronized static String getChargeSequenceNum(String pre){
StringBuffer sequenceNum = new StringBuffer();
Date dateTime = new D
- POI读写海量数据
ctrain
海量数据
import java.io.FileOutputStream;
import java.io.OutputStream;
import org.apache.poi.xssf.streaming.SXSSFRow;
import org.apache.poi.xssf.streaming.SXSSFSheet;
import org.apache.poi.xssf.streaming
- mysql 日期格式化date_format详细使用
daizj
mysqldate_format日期格式转换日期格式化
日期转换函数的详细使用说明
DATE_FORMAT(date,format) Formats the date value according to the format string. The following specifiers may be used in the format string. The&n
- 一个程序员分享8年的开发经验
dcj3sjt126com
程序员
在中国有很多人都认为IT行为是吃青春饭的,如果过了30岁就很难有机会再发展下去!其实现实并不是这样子的,在下从事.NET及JAVA方面的开发的也有8年的时间了,在这里在下想凭借自己的亲身经历,与大家一起探讨一下。
明确入行的目的
很多人干IT这一行都冲着“收入高”这一点的,因为只要学会一点HTML, DIV+CSS,要做一个页面开发人员并不是一件难事,而且做一个页面开发人员更容
- android欢迎界面淡入淡出效果
dcj3sjt126com
android
很多Android应用一开始都会有一个欢迎界面,淡入淡出效果也是用得非常多的,下面来实现一下。
主要代码如下:
package com.myaibang.activity;
import android.app.Activity;import android.content.Intent;import android.os.Bundle;import android.os.CountDown
- linux 复习笔记之常见压缩命令
eksliang
tar解压linux系统常见压缩命令linux压缩命令tar压缩
转载请出自出处:http://eksliang.iteye.com/blog/2109693
linux中常见压缩文件的拓展名
*.gz gzip程序压缩的文件
*.bz2 bzip程序压缩的文件
*.tar tar程序打包的数据,没有经过压缩
*.tar.gz tar程序打包后,并经过gzip程序压缩
*.tar.bz2 tar程序打包后,并经过bzip程序压缩
*.zi
- Android 应用程序发送shell命令
gqdy365
android
项目中需要直接在APP中通过发送shell指令来控制lcd灯,其实按理说应该是方案公司在调好lcd灯驱动之后直接通过service送接口上来给APP,APP调用就可以控制了,这是正规流程,但我们项目的方案商用的mtk方案,方案公司又没人会改,只调好了驱动,让应用程序自己实现灯的控制,这不蛋疼嘛!!!!
发就发吧!
一、关于shell指令:
我们知道,shell指令是Linux里面带的
- java 无损读取文本文件
hw1287789687
读取文件无损读取读取文本文件charset
java 如何无损读取文本文件呢?
以下是有损的
@Deprecated
public static String getFullContent(File file, String charset) {
BufferedReader reader = null;
if (!file.exists()) {
System.out.println("getFull
- Firebase 相关文章索引
justjavac
firebase
Awesome Firebase
最近谷歌收购Firebase的新闻又将Firebase拉入了人们的视野,于是我做了这个 github 项目。
Firebase 是一个数据同步的云服务,不同于 Dropbox 的「文件」,Firebase 同步的是「数据」,服务对象是网站开发者,帮助他们开发具有「实时」(Real-Time)特性的应用。
开发者只需引用一个 API 库文件就可以使用标准 RE
- C++学习重点
lx.asymmetric
C++笔记
1.c++面向对象的三个特性:封装性,继承性以及多态性。
2.标识符的命名规则:由字母和下划线开头,同时由字母、数字或下划线组成;不能与系统关键字重名。
3.c++语言常量包括整型常量、浮点型常量、布尔常量、字符型常量和字符串性常量。
4.运算符按其功能开以分为六类:算术运算符、位运算符、关系运算符、逻辑运算符、赋值运算符和条件运算符。
&n
- java bean和xml相互转换
q821424508
javabeanxmlxml和bean转换java bean和xml转换
这几天在做微信公众号
做的过程中想找个java bean转xml的工具,找了几个用着不知道是配置不好还是怎么回事,都会有一些问题,
然后脑子一热谢了一个javabean和xml的转换的工具里,自己用着还行,虽然有一些约束吧 ,
还是贴出来记录一下
顺便你提一下下,这个转换工具支持属性为集合、数组和非基本属性的对象。
packag
- C 语言初级 位运算
1140566087
位运算c
第十章 位运算 1、位运算对象只能是整形或字符型数据,在VC6.0中int型数据占4个字节 2、位运算符: 运算符 作用 ~ 按位求反 << 左移 >> 右移 & 按位与 ^ 按位异或 | 按位或 他们的优先级从高到低; 3、位运算符的运算功能: a、按位取反: ~01001101 = 101
- 14点睛Spring4.1-脚本编程
wiselyman
spring4
14.1 Scripting脚本编程
脚本语言和java这类静态的语言的主要区别是:脚本语言无需编译,源码直接可运行;
如果我们经常需要修改的某些代码,每一次我们至少要进行编译,打包,重新部署的操作,步骤相当麻烦;
如果我们的应用不允许重启,这在现实的情况中也是很常见的;
在spring中使用脚本编程给上述的应用场景提供了解决方案,即动态加载bean;
spring支持脚本