- 什么是回归模型,什么是自回归模型?
杰瑞学AI
ComputerknowledgeAI/AGINLP/LLMs回归数据挖掘人工智能
在统计学和机器学习中,回归模型和自回归模型都是用来预测或建模变量之间关系的工具,但它们在数据类型和变量依赖关系上有着关键的区别。回归模型(RegressionModel)回归模型是一种统计方法,用于建立一个或多个自变量(independentvariables)与一个因变量(dependentvariable)之间的关系。它的主要目标是预测因变量的值,或者理解自变量如何影响因变量。核心思想:假设因
- 使用argparse封装python程序为命令行工具
纪伊路上盛名在
生信推文-pythonpython开发语言自动化
小规模的python代码,jupytercell中直接运行,相当于该py文件直接python运行,但是像shell脚本一样,给予参数自由度设置,更方便分析,也就是我们需要传入参数进行重复性、同质性的操作。Q:如何使用argparse将Python程序封装为可调用的命令行工具?比如说我有一个函数,各个模块我已经写好了,这里引用一下我之前上统计学习课的时候举的一个HMM的例子,简单来说,就是一阶HMM
- 贝叶斯算法:从概率推断到智能决策的基石
weixin_47233946
算法算法
##引言在人工智能与机器学习的蓬勃发展中,贝叶斯算法以其独特的概率推理方式和动态更新的特性,在垃圾邮件过滤、疾病诊断、推荐系统等关键领域展现出强大的应用价值。本文将从概率论基础出发,深入解析贝叶斯算法的核心思想及其实现方式,揭示这一统计学方法如何演变为现代智能系统的决策利器。---##一、贝叶斯定理:概率之门的钥匙###1.1基本公式表述贝叶斯定理的数学表达式揭示事件间的关联关系:$$P(A|B)
- CART算法全解析:分类回归双修的决策树之王
大千AI助手
人工智能Python#OTHER算法分类回归决策树数据挖掘CARTDecisionTree
CART(ClassificationandRegressionTrees)是决策树领域的里程碑算法,由统计学家Breiman等人在1984年提出。作为当今最主流的决策树实现,它革命性地统一了分类与回归任务,其二叉树结构和剪枝技术成为现代集成学习(如随机森林、XGBoost)的基石。本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕
- python scipy简介
凤枭香
Python图像处理pythonscipy开发语言图像处理
scipyscipy是一个python开源的数学计算库,可以应用于数学、科学以及工程领域,它是基于numpy的科学计算库。主要包含了统计学、最优化、线性代数、积分、傅里叶变换、信号处理和图像处理以及常微分方程的求解以及其他科学工程中所用到的计算。scipy模块介绍scipy主要通过下面这些包来实现数学算法和科学计算,后面对于scipy的讲解主要也是基于这些包来实现的cluster:包含聚类算法co
- Task 01 第一章习题
1.1说明伯努利模型的极大似然估计以及贝叶斯估计中的统计学习方法三要素。伯努利模型是定义在取值为0与1的随机变量上的概率分布。假设观测到伯努利模型n次独立的数据生成结果,其中k次的结果为1,这时可以用极大似然估计或贝叶斯估计来估计结果为1的概率。回忆知识点:统计学习方法三要素为:模型+策略+算法模型:在监督学习过程中,模型就是所要学习的条件概率分布或决策函数。策略:统计学习要考虑按照什么样的准则选
- AI大模型从0到1记录学习 大模型技术之机器学习 day27-day60
Gsen2819
算法大模型人工智能人工智能学习机器学习
机器学习概述机器学习(MachineLearning,ML)主要研究计算机系统对于特定任务的性能,逐步进行改善的算法和统计模型。通过输入海量训练数据对模型进行训练,使模型掌握数据所蕴含的潜在规律,进而对新输入的数据进行准确的分类或预测。机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸优化、算法复杂度理论等多门学科。人工智能、机器学习与深度学习人工智能(AI)是计算机科学的一个广泛领域,
- (详细介绍)什么是 Spherical Gaussian(球形高斯分布)
音程
数学数学
文章目录什么是SphericalGaussian?几何意义:为什么叫“球形”?特点总结:应用场景举例:✅示例代码(Python)相关概念对比:SphericalGaussian(球形高斯分布)是概率论与统计学中一个非常常见且重要的概念,尤其在机器学习、信号处理、模式识别等领域有广泛应用。什么是SphericalGaussian?SphericalGaussianDistribution(球形高斯分
- AI模型的泛化性的第一性原理是什么?
mao_feng
人工智能
目录**一、泛化性的第一性原理:统计学习理论的核心****1.独立同分布假设(IID)是泛化的基础****2.泛化误差:理论本质的数学刻画****3.模型复杂度与样本量的权衡****二、实现泛化的核心机制:正则化与隐式约束****1.显式正则化:复杂度惩罚****2.隐式正则化:优化过程的泛化诱导****3.数据层面的泛化增强****三、深度学习的特殊性:过参数化与泛化的悖论****1.“双下降曲
- 假设检验:统计推断的决策艺术
Algo-hx
概率论与数理统计概率论
目录引言8假设检验8.1假设检验的基本原理8.1.1核心概念框架8.1.2假设形式8.2检验的两类错误8.2.1错误类型矩阵8.2.2错误概率关系8.3单正态总体参数检验8.3.1均值μ的检验8.3.2方差σ²的检验8.4双正态总体参数检验8.4.1均值差检验8.4.2方差比检验8.5P值:检验的客观度量8.5.1P值定义8.5.2决策规则8.5.3P值解读引言假设检验是统计学的’审判法庭’——通
- 贝叶斯原理:解锁不确定性的智慧钥匙(全网最详细)
富士达幸运星
贝叶斯原理人工智能机器学习
在浩瀚的统计学与概率论海洋中,贝叶斯原理如同一盏明灯,照亮了我们在不确定性中前行的道路。它不仅仅是一种计算方法,更是一种深刻的思维方式,让我们能够基于有限的信息和先验知识,对未知事件做出更加合理的预测和判断。本文将带您一窥贝叶斯原理的奥秘,探索它如何在各个领域发光发热。一、贝叶斯原理的起源与核心概念起源贝叶斯原理得名于18世纪的英国数学家托马斯·贝叶斯(ThomasBayes),尽管他本人并未直接
- 利用 Python 和 scikit - learn 进行分层抽样
Python编程之道
python开发语言ai
利用Python和scikit-learn进行分层抽样关键词:分层抽样、scikit-learn、Python、数据采样、机器学习、数据预处理、统计学摘要:本文深入探讨了分层抽样在数据科学和机器学习中的应用。我们将从统计学基础出发,详细讲解分层抽样的原理、优势以及实现方法。通过Python和scikit-learn库的实际代码示例,展示如何在不同场景下应用分层抽样技术。文章还涵盖了分层抽样的数学模
- JAVA推荐系统-基于用户和物品协同过滤的电影推荐
泰山AI
技术交流推荐算法java算法
系统原理该系统使用java编写的基于用户的协同过滤算法(UserCF)和基于物品(此应用中指电影)的协同过滤(ItemtemCF)利用统计学的相关系数经常皮尔森(pearson)相关系数计算相关系数来实现千人千面的推荐系统。协同过滤算法协同过滤推荐算法是诞生最早,并且较为著名的推荐算法。主要的功能是预测和推荐。协同过滤(CollaborativeFiltering,简写CF)是推荐系统最重要得思想
- 中级统计师-统计学基础知识-第八章 统计指数
孟意昶
考证之旅python机器学习算法
第一节统计指数的概念和种类一、统计指数的概念广义指数:表明社会经济现象总体数量变动的相对数示例:单只股票价格指数Kp=p1p0=78.573.5≈1.068K_p=\frac{p_1}{p_0}=\frac{78.5}{73.5}\approx1.068Kp=p0p1=73.578.5≈1.068(p1p_1p1为报告期价格,p0p_0p0为基期价格)狭义指数:表明复杂总体数量综合变动的相对数复杂
- 没有统计学基础,如何才能学好SPSS和SAS?
cda2024
学习python数据分析
在当今数据驱动的时代,掌握数据分析工具如SPSS和SAS已经成为许多职场人士的必备技能。然而,很多初学者常常会问:“我没有统计学基础,如何才能学好SPSS和SAS?”这确实是一个值得探讨的问题。本文将从多个角度为你解答这个问题,并提供一些实用的学习建议。一、理解SPSS和SAS的定位首先,让我们来了解一下SPSS和SAS这两个工具的定位和功能。SPSS(StatisticalPackagefort
- Python量化投资入门教程:从零构建你的第一个交易策略
聪明的一休哥哥
程序员理财python开发语言量化交易
1、什么是量化投资?量化投资(QuantitativeInvestment),即通过数量化方式及计算机程序化发出买卖指令,以获取超额收益或特定风险收益比为目的的交易方式。它借助现代统计学、数学方法,利用计算机技术从海量历史数据中寻找能带来超额收益的“大概率”策略和规律,并纪律严明地按照这些策略构建的数量化模型来执行投资理念。其核心优势在于:纪律性:避免投资者在市场波动中因情绪波动做出错误决策。效率
- 詹森不等式(Jensen’s Inequality)——EM算法的基础
phoenix@Capricornus
模式识别中的数学问题机器学习
詹森不等式(Jensen’sInequality)是数学中一个非常重要的不等式,广泛应用于概率论、统计学、凸优化、信息论等领域。它基于凸函数和凹函数的性质。一、基本定义设函数fff是定义在区间III上的凸函数(convexfunction),且随机变量XXX的取值落在III内,期望存在,则有:E[f(X)]⩾f(E[X]){E}[f(X)]\geqslantf({E}[X])E[f(X)]⩾f(E
- 吴恩达机器学习入门笔记(Week 1)
冒冒喵
吴恩达机器学习入门机器学习笔记人工智能
吴恩达机器学习Week1学习资源及工具机器学习分类专业术语(Terminology)线性回归模型(Linearregression)代价函数(costfunction)学习资源及工具1、课程资源:B站大学2、相关工具:Jupter&Github3、书籍资源:神经网络与深度学习(MichaelNielsen)、机器学习(周志华)、统计学习方法(李航)…机器学习分类1、监督学习(supervisedl
- 机器学习与深度学习16-概率论和统计学01
my_q
机器学习与深度学习机器学习深度学习概率论
目录前文回顾1.什么是概率论和统计学2.概率的基本概念3.什么是概率密度函数和累积分布函数4.均值、中位数与众数前文回顾上一篇文章地址:链接1.什么是概率论和统计学概率论和统计学是数学中重要的分支,用于研究随机事件和数据的分布、关联性以及不确定性。概率论是研究随机事件发生的可能性和规律的数学学科。它提供了一套工具和方法来描述和分析随机变量、随机过程以及他们之间的关系。概率论包括概率分布、随机变量、
- Python统计学实例之正态分布:计算男女身高相差>5厘米的概率
xupeggy163
用python学习统计学python
正态分布计算:示例1正态分布计算实例:计算男女身高相差>5厘米的概率解题思路用到的公式总结:正态分布计算实例:计算男女身高相差>5厘米的概率假设男生身高X~N(71,20.25),女生身高Y~N(64,16)解题思路算出两种正态分布的均值和方差算出新的正态分布的均值和方差算出变量5的标准分根据标准分在正态分布表中查询概率值用到的公式z=x−μσz=\frac{x-\mu}{\sigma}z=σx−
- 全球大型语言模型(LLM)技术全景:从GPT到文心一言的智能本质探析
阿部多瑞 ABU
语言模型gpt文心一言
标题:全球大型语言模型(LLM)技术全景:从GPT到文心一言的智能本质探析摘要本文系统解析全球主流LLM(包括OpenAIGPT系列、GooglePaLM、MetaLLaMA及中国文心一言、通义千问等)的技术架构与测试表现,结合认知科学与工程学视角,探讨其通过图灵测试的实质意义。通过对比国内外模型的实现路径,揭示统计学驱动型AI与强人工智能(AGI)的本质鸿沟。1.LLM的技术本质:全球模型的共性
- 02 Deep learning神经网络的编程基础 逻辑回归--吴恩达
狂小虎
DeepLearning深度学习神经网络逻辑回归
逻辑回归逻辑回归是一种用于解决二分类任务(如预测是否是猫咪等)的统计学习方法。尽管名称中包含“回归”,但其本质是通过线性回归的变体输出概率值,并使用Sigmoid函数将线性结果映射到[0,1]区间。以猫咪预测为例假设单个样本/单张图片为(x\mathbf{x}x,y\mathbf{y}y),特征向量X=x\mathbf{x}x,则y^\hat{y}y^即为X的预测值,y^\hat{y}y^=P(y
- 有形皆误,实用者存---ChatGPT o3作答
部分分式
chatgpt人工智能
“Allmodelsarewrong,butsomeareuseful.”——GeorgeE.P.Box出处统计学家GeorgeE.P.Box在1976年《JournaloftheAmericanStatisticalAssociation》演讲稿及1979年论文〈RobustnessintheStrategyofScientificModelBuilding〉中反复强调这句话,用以提醒研究者“模
- 概率单纯形(Probability Simplex)
F_D_Z
数理杂深度学习概率单纯形
目录定义性质在统计学中的应用在机器学习中的应用在信息论中的应用在优化问题中的应用在其他领域的应用定义定义:在数学中,概率单纯形(ProbabilitySimplex)是指在nnn维空间中,所有分量非负且分量之和为1的向量集合。用数学符号表示为:Δn−1={p∈Rn∣pi≥0foralli,and∑i=1npi=1}\Delta^{n-1}=\left\{\mathbf{p}\in\mathbb{R
- 矩阵的奇异值(Singular Values)
幼儿园大哥~
扩展知识矩阵算法线性代数
矩阵的奇异值(SingularValues)是奇异值分解(SVD)过程中得到的一组重要特征值。它们在许多应用中非常重要,如信号处理、数据压缩和统计学等。以下是对奇异值及其计算和性质的详细解释:奇异值分解(SVD)奇异值分解是矩阵分解的一种方法,它将任意一个实数或复数矩阵分解为三个特定矩阵的乘积。具体来说,对于一个m×nm\timesnm×n的矩阵M\mathbf{M}M,其奇异值分解表示为:M=U
- Python学习心得:代码森林的冒险
穿梭的编织者
python开发语言
第一章:迷雾中的第一步林然从未想过自己会与代码结缘。那是一个平淡的周六清晨,阳光穿过窗帘,洒在她那台老旧的笔记本电脑上。屏幕上,Python的安装界面静静地等待着她的决定。她是一个文科生,大学主修社会学,对数字和逻辑的兴趣仅限于偶尔翻看的统计学课本。可最近,她在网上看到一篇关于数据分析的文章,文中提到Python如何将枯燥的数字变成引人入胜的故事。那一刻,她的心被点燃了。“Python简单,像写诗
- 连续变量的全概率和贝叶斯公式_朴素贝叶斯分类:原理
小红帽的灰灰狼
连续变量的全概率和贝叶斯公式
贝叶斯原理是英国数学家托马斯·贝叶斯提出的。贝叶斯是个很神奇的人,他的经历类似梵高。生前没有得到重视,死后,他写的一篇关于归纳推理的论文被朋友翻了出来,并发表了。这一发表不要紧,结果这篇论文的思想直接影响了接下来两个多世纪的统计学,是科学史上著名的论文之一。贝叶斯原理贝叶斯为了解决一个叫“逆向概率”问题写了一篇文章,**尝试解答在没有太多可靠证据的情况下,怎样做出更符合数学逻辑的推测。**什么是“
- 小样本百分比的统计检验
一只土卜皿
spssspss学习
当样本量小于40且需要比较占比(比例)的统计学差异时,需根据具体场景选择适当的方法。以下是针对小样本量的推荐方法和操作步骤:1.核心方法选择(1)两组占比比较(如A组20%vsB组40%)Fisher精确检验(Fisher’sExactTest)适用条件:样本量<40,或任一格期望频数<5。适用于2×2列联表(如两组+二分类结局)。SPSS操作:Analyze→DescriptiveStatist
- 参数/非参数检验和连续/离散/分类等变量类型的关系
一只土卜皿
统计学基础学习
嗯,用户问的是参数检验、非参数检验与变量类型的关系。首先,我需要回忆统计学中的基本概念。参数检验通常假设数据服从特定分布,比如正态分布,而非参数检验则不依赖这种假设。变量类型包括连续、离散和分类,分类变量又可以分有序和无序。接下来,用户可能想知道在不同变量类型下应该选择哪种检验方法。比如,对于连续变量,参数检验如t检验或ANOVA可能适用,但若数据不满足正态性,可能需要非参数检验如Mann-Whi
- DAY35作业
weixin_71046789
Python打卡训练营内容算法深度学习人工智能
知识点回顾:三种不同的模型可视化方法:推荐torchinfo打印summary+权重分布可视化进度条功能:手动和自动写法,让打印结果更加美观推理的写法:评估模式作业:调整模型定义时的超参数,对比下效果。1.鸢尾花数据集(Irisdataset)是机器学习和统计学中常用的经典数据集:基本信息样本数量:共150个样本。特征数量:每个样本有4个特征,分别为萼片长度、萼片宽度、花瓣长度、花瓣宽度,单位均为
- 设计模式介绍
tntxia
设计模式
设计模式来源于土木工程师 克里斯托弗 亚历山大(http://en.wikipedia.org/wiki/Christopher_Alexander)的早期作品。他经常发表一些作品,内容是总结他在解决设计问题方面的经验,以及这些知识与城市和建筑模式之间有何关联。有一天,亚历山大突然发现,重复使用这些模式可以让某些设计构造取得我们期望的最佳效果。
亚历山大与萨拉-石川佳纯和穆雷 西乐弗斯坦合作
- android高级组件使用(一)
百合不是茶
androidRatingBarSpinner
1、自动完成文本框(AutoCompleteTextView)
AutoCompleteTextView从EditText派生出来,实际上也是一个文本编辑框,但它比普通编辑框多一个功能:当用户输入一个字符后,自动完成文本框会显示一个下拉菜单,供用户从中选择,当用户选择某个菜单项之后,AutoCompleteTextView按用户选择自动填写该文本框。
使用AutoCompleteTex
- [网络与通讯]路由器市场大有潜力可挖掘
comsci
网络
如果国内的电子厂商和计算机设备厂商觉得手机市场已经有点饱和了,那么可以考虑一下交换机和路由器市场的进入问题.....
这方面的技术和知识,目前处在一个开放型的状态,有利于各类小型电子企业进入
&nbs
- 自写简单Redis内存统计shell
商人shang
Linux shell统计Redis内存
#!/bin/bash
address="192.168.150.128:6666,192.168.150.128:6666"
hosts=(${address//,/ })
sfile="staticts.log"
for hostitem in ${hosts[@]}
do
ipport=(${hostitem
- 单例模式(饿汉 vs懒汉)
oloz
单例模式
package 单例模式;
/*
* 应用场景:保证在整个应用之中某个对象的实例只有一个
* 单例模式种的《 懒汉模式》
* */
public class Singleton {
//01 将构造方法私有化,外界就无法用new Singleton()的方式获得实例
private Singleton(){};
//02 申明类得唯一实例
priva
- springMvc json支持
杨白白
json springmvc
1.Spring mvc处理json需要使用jackson的类库,因此需要先引入jackson包
2在spring mvc中解析输入为json格式的数据:使用@RequestBody来设置输入
@RequestMapping("helloJson")
public @ResponseBody
JsonTest helloJson() {
- android播放,掃描添加本地音頻文件
小桔子
最近幾乎沒有什麽事情,繼續鼓搗我的小東西。想在項目中加入一個簡易的音樂播放器功能,就像華為p6桌面上那麼大小的音樂播放器。用過天天動聽或者QQ音樂播放器的人都知道,可已通過本地掃描添加歌曲。不知道他們是怎麼實現的,我覺得應該掃描設備上的所有文件,過濾出音頻文件,每個文件實例化為一個實體,記錄文件名、路徑、歌手、類型、大小等信息。具體算法思想,
- oracle常用命令
aichenglong
oracledba常用命令
1 创建临时表空间
create temporary tablespace user_temp
tempfile 'D:\oracle\oradata\Oracle9i\user_temp.dbf'
size 50m
autoextend on
next 50m maxsize 20480m
extent management local
- 25个Eclipse插件
AILIKES
eclipse插件
提高代码质量的插件1. FindBugsFindBugs可以帮你找到Java代码中的bug,它使用Lesser GNU Public License的自由软件许可。2. CheckstyleCheckstyle插件可以集成到Eclipse IDE中去,能确保Java代码遵循标准代码样式。3. ECLemmaECLemma是一款拥有Eclipse Public License许可的免费工具,它提供了
- Spring MVC拦截器+注解方式实现防止表单重复提交
baalwolf
spring mvc
原理:在新建页面中Session保存token随机码,当保存时验证,通过后删除,当再次点击保存时由于服务器端的Session中已经不存在了,所有无法验证通过。
1.新建注解:
? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
- 《Javascript高级程序设计(第3版)》闭包理解
bijian1013
JavaScript
“闭包是指有权访问另一个函数作用域中的变量的函数。”--《Javascript高级程序设计(第3版)》
看以下代码:
<script type="text/javascript">
function outer() {
var i = 10;
return f
- AngularJS Module类的方法
bijian1013
JavaScriptAngularJSModule
AngularJS中的Module类负责定义应用如何启动,它还可以通过声明的方式定义应用中的各个片段。我们来看看它是如何实现这些功能的。
一.Main方法在哪里
如果你是从Java或者Python编程语言转过来的,那么你可能很想知道AngularJS里面的main方法在哪里?这个把所
- [Maven学习笔记七]Maven插件和目标
bit1129
maven插件
插件(plugin)和目标(goal)
Maven,就其本质而言,是一个插件执行框架,Maven的每个目标的执行逻辑都是由插件来完成的,一个插件可以有1个或者几个目标,比如maven-compiler-plugin插件包含compile和testCompile,即maven-compiler-plugin提供了源代码编译和测试源代码编译的两个目标
使用插件和目标使得我们可以干预
- 【Hadoop八】Yarn的资源调度策略
bit1129
hadoop
1. Hadoop的三种调度策略
Hadoop提供了3中作业调用的策略,
FIFO Scheduler
Fair Scheduler
Capacity Scheduler
以上三种调度算法,在Hadoop MR1中就引入了,在Yarn中对它们进行了改进和完善.Fair和Capacity Scheduler用于多用户共享的资源调度
2. 多用户资源共享的调度
- Nginx使用Linux内存加速静态文件访问
ronin47
Nginx是一个非常出色的静态资源web服务器。如果你嫌它还不够快,可以把放在磁盘中的文件,映射到内存中,减少高并发下的磁盘IO。
先做几个假设。nginx.conf中所配置站点的路径是/home/wwwroot/res,站点所对应文件原始存储路径:/opt/web/res
shell脚本非常简单,思路就是拷贝资源文件到内存中,然后在把网站的静态文件链接指向到内存中即可。具体如下:
- 关于Unity3D中的Shader的知识
brotherlamp
unityunity资料unity教程unity视频unity自学
首先先解释下Unity3D的Shader,Unity里面的Shaders是使用一种叫ShaderLab的语言编写的,它同微软的FX文件或者NVIDIA的CgFX有些类似。传统意义上的vertex shader和pixel shader还是使用标准的Cg/HLSL 编程语言编写的。因此Unity文档里面的Shader,都是指用ShaderLab编写的代码,然后我们来看下Unity3D自带的60多个S
- CopyOnWriteArrayList vs ArrayList
bylijinnan
java
package com.ljn.base;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import java.util.concurrent.CopyOnWriteArrayList;
/**
* 总述:
* 1.ArrayListi不是线程安全的,CopyO
- 内存中栈和堆的区别
chicony
内存
1、内存分配方面:
堆:一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回收 。注意它与数据结构中的堆是两回事,分配方式是类似于链表。可能用到的关键字如下:new、malloc、delete、free等等。
栈:由编译器(Compiler)自动分配释放,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中
- 回答一位网友对Scala的提问
chenchao051
scalamap
本来准备在私信里直接回复了,但是发现不太方便,就简要回答在这里。 问题 写道 对于scala的简洁十分佩服,但又觉得比较晦涩,例如一例,Map("a" -> List(11,111)).flatMap(_._2),可否说下最后那个函数做了什么,真正在开发的时候也会如此简洁?谢谢
先回答一点,在实际使用中,Scala毫无疑问就是这么简单。
- mysql 取每组前几条记录
daizj
mysql分组最大值最小值每组三条记录
一、对分组的记录取前N条记录:例如:取每组的前3条最大的记录 1.用子查询: SELECT * FROM tableName a WHERE 3> (SELECT COUNT(*) FROM tableName b WHERE b.id=a.id AND b.cnt>a. cnt) ORDER BY a.id,a.account DE
- HTTP深入浅出 http请求
dcj3sjt126com
http
HTTP(HyperText Transfer Protocol)是一套计算机通过网络进行通信的规则。计算机专家设计出HTTP,使HTTP客户(如Web浏览器)能够从HTTP服务器(Web服务器)请求信息和服务,HTTP目前协议的版本是1.1.HTTP是一种无状态的协议,无状态是指Web浏览器和Web服务器之间不需要建立持久的连接,这意味着当一个客户端向服务器端发出请求,然后We
- 判断MySQL记录是否存在方法比较
dcj3sjt126com
mysql
把数据写入到数据库的时,常常会碰到先要检测要插入的记录是否存在,然后决定是否要写入。
我这里总结了判断记录是否存在的常用方法:
sql语句: select count ( * ) from tablename;
然后读取count(*)的值判断记录是否存在。对于这种方法性能上有些浪费,我们只是想判断记录记录是否存在,没有必要全部都查出来。
- 对HTML XML的一点认识
e200702084
htmlxml
感谢http://www.w3school.com.cn提供的资料
HTML 文档中的每个成分都是一个节点。
节点
根据 DOM,HTML 文档中的每个成分都是一个节点。
DOM 是这样规定的:
整个文档是一个文档节点
每个 HTML 标签是一个元素节点
包含在 HTML 元素中的文本是文本节点
每一个 HTML 属性是一个属性节点
注释属于注释节点
Node 层次
- jquery分页插件
genaiwei
jqueryWeb前端分页插件
//jquery页码控件// 创建一个闭包 (function($) { // 插件的定义 $.fn.pageTool = function(options) { var totalPa
- Mybatis与Ibatis对照入门于学习
Josh_Persistence
mybatisibatis区别联系
一、为什么使用IBatis/Mybatis
对于从事 Java EE 的开发人员来说,iBatis 是一个再熟悉不过的持久层框架了,在 Hibernate、JPA 这样的一站式对象 / 关系映射(O/R Mapping)解决方案盛行之前,iBaits 基本是持久层框架的不二选择。即使在持久层框架层出不穷的今天,iBatis 凭借着易学易用、
- C中怎样合理决定使用那种整数类型?
秋风扫落叶
c数据类型
如果需要大数值(大于32767或小于32767), 使用long 型。 否则, 如果空间很重要 (如有大数组或很多结构), 使用 short 型。 除此之外, 就使用 int 型。 如果严格定义的溢出特征很重要而负值无关紧要, 或者你希望在操作二进制位和字节时避免符号扩展的问题, 请使用对应的无符号类型。 但是, 要注意在表达式中混用有符号和无符号值的情况。
&nbs
- maven问题
zhb8015
maven问题
问题1:
Eclipse 中 新建maven项目 无法添加src/main/java 问题
eclipse创建maevn web项目,在选择maven_archetype_web原型后,默认只有src/main/resources这个Source Floder。
按照maven目录结构,添加src/main/ja
- (二)androidpn-server tomcat版源码解析之--push消息处理
spjich
javaandrodipn推送
在 (一)androidpn-server tomcat版源码解析之--项目启动这篇中,已经描述了整个推送服务器的启动过程,并且把握到了消息的入口即XmppIoHandler这个类,今天我将继续往下分析下面的核心代码,主要分为3大块,链接创建,消息的发送,链接关闭。
先贴一段XmppIoHandler的部分代码
/**
* Invoked from an I/O proc
- 用js中的formData类型解决ajax提交表单时文件不能被serialize方法序列化的问题
中华好儿孙
JavaScriptAjaxWeb上传文件FormData
var formData = new FormData($("#inputFileForm")[0]);
$.ajax({
type:'post',
url:webRoot+"/electronicContractUrl/webapp/uploadfile",
data:formData,
async: false,
ca
- mybatis常用jdbcType数据类型
ysj5125094
mybatismapperjdbcType
MyBatis 通过包含的jdbcType
类型
BIT FLOAT CHAR