pytorch遇到的坑(1) UserWarning: Detected call of `lr_scheduler.step()` before `optimizer.step()`. In PyT

/usr/local/lib/python3.7/dist-packages/torch/optim/lr_scheduler.py:134: UserWarning: Detected call of `lr_scheduler.step()` before `optimizer.step()`. In PyTorch 1.1.0 and later, you should call them in the opposite order: `optimizer.step()` before `lr_scheduler.step()`. Failure to do this will result in PyTorch skipping the first value of the learning rate schedule. See more details at torch.optim — PyTorch 1.10.1 documentation "torch.optim — PyTorch 1.10.1 documentation", UserWarning)

这个警告的的意思是优化不走做出了调整,可能官方的函数已经变了,需要我们做出调整。具体看官网。

其他人的解释:Detected call of `lr_scheduler.step()` before `optimizer.step()`._Mr.horse的博客-CSDN博客

ef train_model(model, criterion, optimizer, scheduler, num_epochs=25):
    since = time.time()

    best_model_wts = copy.deepcopy(model.state_dict())
    best_acc = 0.0

    for epoch in range(num_epochs):
        print('Epoch {}/{}'.format(epoch, num_epochs - 1))
        print('-' * 10)

        # Each epoch has a training and validation phase
        for phase in ['train', 'val']:
            if phase == 'train':
                scheduler.step()#将这个代码放到每个epoche训练完以后
                model.train()  # Set model to training mode
            else:
                model.eval()   # Set model to evaluate mode

            running_loss = 0.0
            running_corrects = 0

            # Iterate over data.
            for inputs, labels in dataloaders[phase]:
                inputs = inputs.to(device)
                labels = labels.to(device)

                # zero the parameter gradients
                optimizer.zero_grad()

                # forward
                # track history if only in train
                with torch.set_grad_enabled(phase == 'train'):
                    outputs = model(inputs)
                    _, preds = torch.max(outputs, 1)
                    loss = criterion(outputs, labels)

                    # backward + optimize only if in training phase
                    if phase == 'train':
                        loss.backward()
                        optimizer.step()

                # statistics
                running_loss += loss.item() * inputs.size(0)
                running_corrects += torch.sum(preds == labels.data)

            epoch_loss = running_loss / dataset_sizes[phase]
            epoch_acc = running_corrects.double() / dataset_sizes[phase]

            print('{} Loss: {:.4f} Acc: {:.4f}'.format(
                phase, epoch_loss, epoch_acc))

            # deep copy the model
            if phase == 'val' and epoch_acc > best_acc:
                best_acc = epoch_acc
                best_model_wts = copy.deepcopy(model.state_dict())

        print()

    time_elapsed = time.time() - since
    print('Training complete in {:.0f}m {:.0f}s'.format(
        time_elapsed // 60, time_elapsed % 60))
    print('Best val Acc: {:4f}'.format(best_acc))

    # load best model weights
    model.load_state_dict(best_model_wts)
    return model

pytorch遇到的坑(1) UserWarning: Detected call of `lr_scheduler.step()` before `optimizer.step()`. In PyT_第1张图片

 修改

pytorch遇到的坑(1) UserWarning: Detected call of `lr_scheduler.step()` before `optimizer.step()`. In PyT_第2张图片

 

你可能感兴趣的:(pytorch,pytorch,深度学习,机器学习)