测试工程笔记 Tensorflow学习资源汇总
转自:https://github.com/Codermay/Test-1
1)适合初学者的Tensorflow教程和代码示例: https://github.com/aymericdamien/TensorFlow-Examples
2)从Tensorflow基础知识到有趣的项目应用: https://github.com/pkmital/tensorflow_tutorials
3)使用Jupyter Notebook运行的TensorFlow教程:
https://github.com/sjchoi86/Tensorflow-101
4)构建您的第一款TensorFlow Android应用程序:
https://omid.al/posts/2017-02-20-Tutorial-Build-Your-First-Tensorflow-Android-App.html
5)Tensorflow代码练习手册:
https://github.com/terryum/TensorFlow_Exercises
二、Tensorflow视频资源:
1)TF Girls 修炼指南:https://www.youtube.com/watchv=TrWqRMJZU8A&list=PLwY2GJhAPWRcZxxVFpNhhfivuW0kX15yG&index=2
2)炼数成金Tensorflow公开课:https://www.youtube.com/watchv=eAtGqz8ytOI&list=PLjSwXXbVlK6IHzhLOMpwHHLjYmINRstrk
3)当然还有台湾国立大学李宏毅教程深度学习的课程也值得推荐给大家: https://www.bilibili.com/video/av9770302/
4)英文不错的小伙伴,也为大家推荐一些国外大牛的英文课程: https://www.youtube.com/watch?v=vq2nnJ4g6N0;http://bit.ly/1OX8s8Y; https://www.youtube.com/watch?v=GZBIPwdGtkk&t=125s
5)介绍了这么多课程,怎么能少了斯坦福大学Tensorflow系列的课程!!!
https://www.youtube.com/watch?v=g-EvyKpZjmQ&index=1&list=PLIDllPt3EQZoS8gCP3cw273Cq9puuPLTg
课程主页: http://web.stanford.edu/class/cs20si/index.html
课程所有的ppt和笔记notes下载地址: https://pan.baidu.com/s/1o8uOQpW
课程相关实战的github地址: chiphuyen/tf-stanford-tutorials
6)最后,怎么能忘了谷歌爸爸发布在Tensorflow官网上的视频教程,针对Tensorflow初级学习的小伙伴还是非常不错的一套课程,有助于大家快速入门:
https://developers.google.cn/machine-learning/crash-course/
三、Tensorflow项目资源:
1)一个实现实现Alex Graves论文的随机手写生成的案例: https://github.com/hardmaru/write-rnn-tensorflow
2)基于Tensorflow的生成对抗文本到图像合成: https://github.com/zsdonghao/text-to-image
3)基于注意力的图像字幕生成器:
https://github.com/yunjey/show-attend-and-tell
该模型引入了基于注意力的图像标题生成器。可以将其注意力转移到图像的相关部分,同时生成每个单词。
4)神经网络着色灰度图像:
https://github.com/pavelgonchar/colornet
一个非常有趣且应用场景非常广的一个项目,使用神经网络着色灰度图像。
5)基于Facebook中FastText的简单嵌入式文本分类器:
https://github.com/apcode/tensorflow_fasttext
6)用Tensorflow实现“基于句子分类的卷积神经网络”: https://github.com/dennybritz/cnn-text-classification-tf
7)使用OpenStreetMap功能和卫星图像训练TensorFlow神经网络: https://github.com/jtoy/awesome-tensorflow
该项目是通过使用OpenStreetMap(OSM)数据训练神经网络,进而对卫星图像中的特征进行分类。
8)用Tenflow实现YOLO:“实时对象检测”,并支持实时在移动设备上运行的一个小项目 https://github.com/thtrieu/darkflow,
9)opencv学习的nice网站 https://www.learnopencv.com/
10)经典论文翻译学习 https://github.com/SnailTyan/deep-learning-papers-translation
11)目标检测的经典之作地址 https://handong1587.github.io/deep_learning/2015/10/09/object-detection.html 12)动手学深度学习 https://zh.gluon.ai/index.html https://zh.gluon.ai/toc.html https://github.com/SnailTyan/gluon-practice-code
12)三个非常深的神经网络,分别是ResNet、HighwayNet和DenseNet,以及它们在Tensorflow上的实现。作者用CIFAR10数据集训练这些网络进行图像分类,在一小时左右的训练之后均实现了90%以上的精度。 https://github.com/awjuliani/TF-Tutorials https://www.cnblogs.com/skyfsm/p/8451834.html
13)场景文本检测与场景识别基础 https://blog.csdn.net/qq_14845119/article/details/82219246https://blog.csdn.net/jiachen0212/article/details/79498047
显著性
认知注意模型 决策论注意模型 频域分析注意模型 图论注意模型
14)目标检测项目进展索引描述 https://blog.csdn.net/cym1990/article/details/78772020https://blog.csdn.net/u014380165/article/details/82025720https://handong1587.github.io/deep_learning/2015/10/09/object-detection.html
15)opencv关键点检测 https://www.learnopencv.com/hand-keypoint-detection-using-deep-learning-and-opencv/
16)keras分割教程 https://www.cnblogs.com/skyfsm/p/8330882.htmlhttps://www.cnblogs.com/skyfsm/p/6806246.html#4106616 https://github.com/zhixuhao/unet
17)图像分割教程 https://blog.csdn.net/yy2yy99/article/details/83029542 https://github.com/mrgloom/awesome-semantic-segmentation
18)目标检测的教程综述 https://handong1587.github.io/deep_learning/2015/10/09/object-detection.html
19)遥感图像分割与识别的新思路 https://www.cnblogs.com/skyfsm/p/8330882.html
20)不规则及倾斜问题文字的识别 https://blog.csdn.net/abc8350712/article/details/78331166https://blog.csdn.net/weixin_39099017/article/details/79654756
21)keras GRU文字识别方法 https://blog.csdn.net/dcrmg/article/details/79306402
22)objectdetection教程 https://blog.csdn.net/zj1131190425/article/details/80778888
23)pre-train与Fine-tuning https://blog.csdn.net/yjl9122/article/details/70198885https://blog.csdn.net/wangzuhui0430/article/details/48156717 https://blog.csdn.net/dcxhun3/article/details/51768923
24)Ensemble Learning模型融合 https://blog.csdn.net/shine19930820/article/details/75209021
25)python中传统的图像转为base64传输 https://blog.csdn.net/kl28978113/article/details/79034014
26)车道线分割 https://github.com/SeokjuLee/VPGNet 边缘分割与检测 https://github.com/moabitcoin/holy-edgehttps://github.com/MaybeShewill-CV/lanenet-lane-detection https://github.com/jeremy-shannon/CarND-Advanced-Lane-Lines https://github.com/jeremy-shannon 车道线与车辆检测项目 https://github.com/windowsub0406/Vehicle-Detection-YOLO-ver
27)pytorch教程 https://github.com/chenyuntc/pytorch-book tenorflow教程https://blog.csdn.net/zj1131190425/article/details/80726353 https://mp.weixin.qq.com/s/rstzkyyzuQTqjF-uoonzcw 28)唇语识别 https://github.com/astorfi/lip-reading-deeplearning DEMO 演示地址 1.Training/Evaluation :https://asciinema.org/a/kXIDzZt1UzRioL1gDPzOy9VkZ 2.Lip Tracking: https://asciinema.org/a/RiZtscEJscrjLUIhZKkoG3GVm
29)pocketflow腾讯开源压缩项目 https://github.com/Tencent/PocketFlow
30)谷歌开源AdaNet基于TensorFlow的AutoML框架 相关论文: AdaNet: Adaptive Structural Learning of Artificial Neural Networks 论文地址: http://proceedings.mlr.press/v70/cortes17a/cortes17a.pdf Github 项目地址:https://github.com/tensorflow/adanet 教程 notebook:https://github.com/tensorflow/adanet/tree/v0.1.0/adanet/examples/tutorials