本文主要讨论如何计算 tensorflow 和 pytorch 模型的 FLOPs。如有表述不当之处欢迎批评指正。欢迎任何形式的转载,但请务必注明出处。
FLOPs 是 floating point operations 的缩写,指浮点运算数,可以用来衡量模型/算法的计算复杂度。本文主要讨论如何在 tensorflow 1.x, tensorflow 2.x 以及 pytorch 中利用相关工具计算对应模型的 FLOPs。
为了说明方便,先搭建一个简单的神经网络模型,其模型结构以及主要参数如表1 所示。
Layers | channels | Kernels | Strides | Units | Activation |
---|---|---|---|---|---|
Conv2D | 32 | (4,4) | (1,2) | \ | relu |
GRU | \ | \ | \ | 96 | \ |
Dense | \ | \ | \ | 256 | sigmoid |
用 tensorflow(实际使用 tensorflow 中的 keras 模块)实现该模型的代码为:
from tensorflow.keras.layers import *
from tensorflow.keras.models import load_model, Model
def test_model_tf(Input_shape):
# shape: [B, C, T, F]
main_input = Input(batch_shape=Input_shape, name='main_inputs')
conv = Conv2D(32, kernel_size=(4, 4), strides=(1, 2), activation='relu', data_format='channels_first', name='conv')(main_input)
# shape: [B, T, FC]
gru = Reshape((conv.shape[2], conv.shape[1] * conv.shape[3]))(conv)
gru = GRU(units=96, reset_after=True, return_sequences=True, name='gru')(gru)
output = Dense(256, activation='sigmoid', name='output')(gru)
model = Model(inputs=[main_input], outputs=[output])
return model
用 pytorch 实现该模型的代码为:
import torch
import torch.nn as nn
class test_model_torch(nn.Module):
def __init__(self):
super(test_model_torch, self).__init__()
self.conv2d = nn.Conv2d(in_channels=1, out_channels=32, kernel_size=(4,4), stride=(1,2))
self.relu = nn.ReLU()
self.gru = nn.GRU(input_size=4064, hidden_size=96)
self.fc = nn.Linear(96, 256)
self.sigmoid = nn.Sigmoid()
def forward(self, inputs):
# shape: [B, C, T, F]
out = self.conv2d(inputs)
out = self.relu(out)
# shape: [B, T, FC]
batch, channel, frame, freq = out.size()
out = torch.reshape(out, (batch, frame, freq*channel))
out, _ = self.gru(out)
out = self.fc(out)
out = self.sigmoid(out)
return out
本节讨论的版本具体为:tensorflow 1.12.0, tensorflow 2.3.1 以及 pytorch 1.10.1+cu102。
在 tensorflow 1.12.0 环境中,可以使用以下代码计算模型的 FLOPs:
import tensorflow as tf
import tensorflow.keras.backend as K
def get_flops(model):
run_meta = tf.RunMetadata()
opts = tf.profiler.ProfileOptionBuilder.float_operation()
flops = tf.profiler.profile(graph=K.get_session().graph,
run_meta=run_meta, cmd='op', options=opts)
return flops.total_float_ops
if __name__ == "__main__":
x = K.random_normal(shape=(1, 1, 100, 256))
model = test_model_tf(x.shape)
print('FLOPs of tensorflow 1.12.0:', get_flops(model))
在 tensorflow 2.3.1 环境中,可以使用以下代码计算模型的 FLOPs :
import tensorflow.compat.v1 as tf
import tensorflow.compat.v1.keras.backend as K
tf.disable_eager_execution()
def get_flops(model):
run_meta = tf.RunMetadata()
opts = tf.profiler.ProfileOptionBuilder.float_operation()
flops = tf.profiler.profile(graph=K.get_session().graph,
run_meta=run_meta, cmd='op', options=opts)
return flops.total_float_ops
if __name__ == "__main__":
x = K.random_normal(shape=(1, 1, 100, 256))
model = test_model_tf(x.shape)
print('FLOPs of tensorflow 2.3.1:', get_flops(model))
在 pytorch 1.10.1+cu102 环境中,可以使用以下代码计算模型的 FLOPs(需要安装 thop):
import thop
x = torch.randn(1, 1, 100, 256)
model = test_model_torch()
flops, _ = thop.profile(model, inputs=(x,))
print('FLOPs of pytorch 1.10.1:', flops * 2)
需要注意的是,thop 返回的是 MACs (Multiply–Accumulate Operations),其等于 2 2 2 倍的 FLOPs,所以上述代码有乘 2 2 2 操作。
三者计算出的 FLOPs 分别为:
tensorflow 1.12.0:
tensorflow 2.3.1:
pytorch 1.10.1:
可以看到 tensorflow 1.12.0 和 tensorflow 2.3.1 的结果基本在同一个量级,而与 pytorch 1.10.1 计算出来的相差甚远。但如果将上述模型结构改为只包含第一层 Conv2D,三者计算出来的 FLOPs 却又是一致的。所以推断差异主要来自于 GRU 的 FLOPs。如读者知道其中详情,还请不吝赐教。
本文给出了在 tensorflow 1.x, tensorflow 2.x 以及 pytorch 中利用相关工具计算模型 FLOPs 的方法,但从本文所使用的测试模型来看, tensorflow 与 pytorch 统计出的结果相差甚远。当然,也可以根据网络层的类型及其对应的参数,推导计算出每个网络层所需的 FLOPs。