from keras.applications.vgg16 import VGG16
from keras.models import Sequential
from keras.layers import Conv2D,MaxPool2D,Activation,Dropout,Flatten,Dense
from keras.optimizers import SGD
from keras.preprocessing.image import ImageDataGenerator,img_to_array,load_img
import numpy as np
- 实例化一个VGG16对象,使用imagenet数据集训练,不包含顶层(即全连接层)
vgg16_model = VGG16(weights='imagenet',include_top=False, input_shape=(150,150,3))
top_model = Sequential()
top_model.add(Flatten(input_shape=vgg16_model.output_shape[1:]))
top_model.add(Dense(256,activation='relu'))
top_model.add(Dropout(0.5))
top_model.add(Dense(2,activation='softmax'))
model = Sequential()
model.add(vgg16_model)
model.add(top_model)
train_datagen = ImageDataGenerator(
rotation_range = 40,
width_shift_range = 0.2,
height_shift_range = 0.2,
rescale = 1/255,
shear_range = 20,
zoom_range = 0.2,
horizontal_flip = True,
fill_mode = 'nearest',
)
test_datagen = ImageDataGenerator(
rescale = 1/255,
)
batch_size = 32
train_generator = train_datagen.flow_from_directory(
'image/train',
target_size=(150,150),
batch_size=batch_size,
)
test_generator = test_datagen.flow_from_directory(
'image/test',
target_size=(150,150),
batch_size=batch_size,
)
train_generator.class_indices
model.compile(optimizer=SGD(lr=1e-4,momentum=0.9),loss='categorical_crossentropy',metrics=['accuracy'])
model.fit_generator(train_generator,steps_per_epoch=len(train_generator),epochs=20,
validation_data=test_generator,validation_steps=len(test_generator))
![keras利用VGG16实现猫狗分类_第1张图片](http://img.e-com-net.com/image/info8/c15bf271d9ee45f4958a5790e74f36b7.jpg)
model.save('model_vgg16.h5')
from keras.models import load_model
import numpy as np
label = np.array(['cat','dog'])
model = load_model('model_vgg16.h5')
image = load_img('image/test/cat/cat.1003.jpg')
image
![keras利用VGG16实现猫狗分类_第2张图片](http://img.e-com-net.com/image/info8/1caae2d951ae4a3cb343884c4e31ce3c.jpg)
image = image.resize((150,150))
image = img_to_array(image)
image = image/255
image = np.expand_dims(image,0)
image.shape
res = label[model.predict_classes(image)]
print(res)
![在这里插入图片描述](http://img.e-com-net.com/image/info8/039d44c50b7442878ce987ff9a835d48.jpg)
import cv2
img = cv2.imread("image/test/dog/dog.1003.jpg")
font = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(img, res[0]+" detected", (30,30), font, 1, (200,100,255), 2, cv2.LINE_AA)
cv2.imshow("dst", img)
cv2.waitKey()
cv2.destroyAllWindows()
![keras利用VGG16实现猫狗分类_第3张图片](http://img.e-com-net.com/image/info8/e210544e1e8549ac98e1a460bcbcb895.jpg)