高通骁龙820A与DeepLearning相结合的ADAS解决方案

汽车行业是一个有百年历史的行业,且在这100多年来,一直循序渐进的发展,很少有突破性的进展。但最近几年,由于技术上的一些新突破,从传感器,到计算机技术,新能源技术,尤其是人工智能领域的一些突破,给传统的汽车行业带来了深刻的变革。其中最突出的就是对自动驾驶的研究和实施
高通骁龙820A与DeepLearning相结合的ADAS解决方案_第1张图片
ADAS,高级驾驶辅助系统(Advanced Driving Assistant System)是利用安装在车上的各式各样传感器,在汽车行驶过程中随时来感应周围的环境,收集数据,进行静态、动态物体的辨识、侦测与追踪,并结合导航仪地图数据,进行系统的运算与分析,从而预先让驾驶者察觉到可能发生的危险,有效增加汽车驾驶的舒适性和安全性。 近年来ADAS市场增长迅速,原来这类系统局限于高端市场,而现在正在进入中端市场,与此同时,许多低技术应用在入门级乘用车领域更加常见,经过改进的新型传感器技术也在为系统布署创造新的机会与策略。

高通骁龙820A与DeepLearning相结合的ADAS解决方案_第2张图片
这台搭载ADAS原型系统的装备,运用了运行在骁龙820A神经网络处理引擎(SNPE)上的统一神经网络算法。在纵目科技和清华大学联合自主开发完成, 能够实现常规道路场景下的ADAS功能,可对车辆、行人、自行车等多类物体识别,以及对像素级别可行驶区域的实时语义分割。

毫无疑问,深度学习的尝试已经在服务器上尝试了多年,但挑战在于,如何把复杂的算法放到线下的处理器上。高通提供了神经网络处理引擎(SNPE)。这款深度学习开发套件SDK今年五月初发布,可运行于搭载了高通Zeroth机器智能平台的820芯片处理器。 开发者可以在SNPE上搭建自己的深度学习网络模型,纵目这款原型产品使用的网络模型是联合清华大学3D Image实验室共同定义的,清华大学提供了初始的网络模型原型,后期优化和算法的工程化、细节的调试和实现是由纵目主导完成的。

高通骁龙820A是从手机平台进行车规化的,它的功耗优化做得相当好;其次,高通背后是基于手机等移动终端的大规模市场,芯片上的IP研发费用在最大的手 机市场上得到了摊销,具有非常明显的成本优势;最后,未来只是单纯强调计算能力或具备深度学习能力的芯片不太可能成为汽车行业大规模应用的产品。类似高通 820A这样,在一块电路板上集成了5G通信模块、神经网络处理引擎、GPS、DSRC、无线WiFi等诸多功能的芯片,是适应未来智能互联/自动驾驶汽 车发展趋势的产品。

未来有望能利用高通820A平台较强的扩展性打造一系列产品,应用场景囊括了从低速的2D/3D环视泊车辅助、自动泊车、自主泊车、高速的AEB/ACC /LDW驾驶辅助,以及属于更高阶段的自动驾驶等范畴。而随着产品功能的变化,会陆续增加摄像头的数量,接入其他功能的传感器。未来再逐步将这些原型产品 推向量产。

你可能感兴趣的:(高通,骁龙820A,ADAS)