模型推理部署过程中,预使用C语言读取一张0~255的灰度图(jpg)至数组中,但由于jpg是压缩后的图像,无法使用C直接简单的读取(需要进行解码,如果能使用opencv另当别论),
故而选择在保存图片的过程中将其保存为csv文件,方便读取,但是虽然我已经使用了np.round将img数组转为了整数,print打印也显示整数,但使用如下语句保存
np.savetxt(save_path + '/' + name[0] + '.csv', img , delimiter=",")
结果发现其默认为科学计数法保存,不仅占空间,而且C语言无法正确读取,但一张352*352的灰度图保存为.csv居然有3Mb就离谱
最后观察源码发现,默认的fmt参数是%18e,只需要将其调整为整数%d保存即可
@array_function_dispatch(_savetxt_dispatcher)
def savetxt(fname, X, fmt='%.18e', delimiter=' ', newline='\n', header='',
footer='', comments='# ', encoding=None):
"""
Save an array to a text file.
Parameters
----------
fname : filename or file handle
If the filename ends in ``.gz``, the file is automatically saved in
compressed gzip format. `loadtxt` understands gzipped files
transparently.
X : 1D or 2D array_like
Data to be saved to a text file.
fmt : str or sequence of strs, optional
A single format (%10.5f), a sequence of formats, or a
multi-format string, e.g. 'Iteration %d -- %10.5f', in which
case `delimiter` is ignored. For complex `X`, the legal options
for `fmt` are:
* a single specifier, `fmt='%.4e'`, resulting in numbers formatted
like `' (%s+%sj)' % (fmt, fmt)`
* a full string specifying every real and imaginary part, e.g.
`' %.4e %+.4ej %.4e %+.4ej %.4e %+.4ej'` for 3 columns
* a list of specifiers, one per column - in this case, the real
and imaginary part must have separate specifiers,
e.g. `['%.3e + %.3ej', '(%.15e%+.15ej)']` for 2 columns
转为整数保存之后大小为483k,合
还是要看源码!
还是要看源码!
还是要看源码!
重要的事说三遍!!!
接下来是C语言读取:
有关细节如何读取,原理请参见这篇文章
int main{
FILE *fp1 = fopen("0001.csv", "r");
if (fp1 == NULL) {
fprintf(stderr, "fopen() failed.\n");
exit(EXIT_FAILURE);
}
int img[352*352] = {0};
char row[35200];
char *token;
for (int ii = 0; ii < 352; ii++)
{
if (fgets(row, 352000, fp1) != NULL) {
token = strtok(row, ",");
for(int jj = 0; jj < 352; jj++)
{
if (token != NULL) {
img[ii*352 + jj] = atoi(token);
token = strtok(NULL, ",");
}
}
}
}
for(int i=0;i<352;i++)
{
for(int j=0;j<352;j++)
{
printf("%d ", img[i*352 + j]);
}
printf("\n");
}
fclose(fp1);
return 0;
}
读取结束 打印对比 完全ok!