【知识点】pandas中的del用法

目录

一、基本知识

二、具体实例

三、注意事项

四、知识延申

 总结


一、基本知识

pandas中的del函数能够删除特定的列。

具体的用法如下:

del df['A']  # 删除A列,会就地修改


二、具体实例

示例:先增添一个由布尔值组成的列:

import pandas as pd
import numpy as np

data = {'state': ['Astrilia', 'Mexico', 'China', 'Mexico'],
        'years': [2000, 2001, 2002, 2003],
        'pop': [1.5, 3.6, 2.4, 5.1]}
frame = pd.DataFrame(data, columns = ['years', 'state', 'pop'])
val = pd.Series([-1.2, -1.5, -1.7])
frame['debt'] = val
val_1 = pd.Series([100, 200, 300], index = [0, 1, 3])
frame['pofit'] = val_1
print(frame)

'''现在构建一个布尔值组成的数组,如果state == Mexico,则在FT列输出T,否则为F'''
#方法1
frame['TF'] = frame.state == 'Mexico'
print(frame)

print(frame.TF[0])

#方法2
Buer = []
for i in range(4):
        Buer.append(frame.state[i] == 'Mexico')
frame['tf'] = Buer
print(frame)

结果:

   years     state  pop  debt  pofit
0   2000  Astrilia  1.5  -1.2  100.0
1   2001    Mexico  3.6  -1.5  200.0
2   2002     China  2.4  -1.7    NaN
3   2003    Mexico  5.1   NaN  300.0
   years     state  pop  debt  pofit     TF
0   2000  Astrilia  1.5  -1.2  100.0  False
1   2001    Mexico  3.6  -1.5  200.0   True
2   2002     China  2.4  -1.7    NaN  False
3   2003    Mexico  5.1   NaN  300.0   True
False
   years     state  pop  debt  pofit     TF     tf
0   2000  Astrilia  1.5  -1.2  100.0  False  False
1   2001    Mexico  3.6  -1.5  200.0   True   True
2   2002     China  2.4  -1.7    NaN  False  False
3   2003    Mexico  5.1   NaN  300.0   True   True

进程已结束,退出代码0

然后删除TF列:

import pandas as pd
import numpy as np

data = {'state': ['Astrilia', 'Mexico', 'China', 'Mexico'],
        'years': [2000, 2001, 2002, 2003],
        'pop': [1.5, 3.6, 2.4, 5.1]}
frame = pd.DataFrame(data, columns = ['years', 'state', 'pop'])
val = pd.Series([-1.2, -1.5, -1.7])
frame['debt'] = val
val_1 = pd.Series([100, 200, 300], index = [0, 1, 3])
frame['pofit'] = val_1
print(frame)

'''现在构建一个布尔值组成的数组,如果state == Mexico,则在FT列输出T,否则为F'''
#构建一个新的列
frame['TF'] = frame.state == 'Mexico'
print(frame)

#删除该列
del frame['TF']
print(frame)

结果:

   years     state  pop  debt  pofit
0   2000  Astrilia  1.5  -1.2  100.0
1   2001    Mexico  3.6  -1.5  200.0
2   2002     China  2.4  -1.7    NaN
3   2003    Mexico  5.1   NaN  300.0
   years     state  pop  debt  pofit     TF
0   2000  Astrilia  1.5  -1.2  100.0  False
1   2001    Mexico  3.6  -1.5  200.0   True
2   2002     China  2.4  -1.7    NaN  False
3   2003    Mexico  5.1   NaN  300.0   True
   years     state  pop  debt  pofit
0   2000  Astrilia  1.5  -1.2  100.0
1   2001    Mexico  3.6  -1.5  200.0
2   2002     China  2.4  -1.7    NaN
3   2003    Mexico  5.1   NaN  300.0

进程已结束,退出代码0

三、注意事项

注意这里:

【知识点】pandas中的del用法_第1张图片

必须要这样写,才可以正常跑通

如果写成这样:

【知识点】pandas中的del用法_第2张图片 这两种写法都会报错!!!


四、知识延申

del删除之后,原数据改变,如果不想让原数据改变,可以用drop

具体分析如下:

del s['d'] #序列删除;原数据改变 # del s1.d #错误用法
s.pop('d') #弹出;参数必须为标签str;原数据改变
 
s.drop('d')       #删除数据‘d' ; 原数据不变
s.drop(['c','d']) #删除数据‘'c',d'  

示例:

import pandas as pd
import numpy as np

data = {'state': ['Astrilia', 'Mexico', 'China', 'Mexico'],
        'years': [2000, 2001, 2002, 2003],
        'pop': [1.5, 3.6, 2.4, 5.1]}
frame = pd.DataFrame(data, columns = ['years', 'state', 'pop'])
val = pd.Series([-1.2, -1.5, -1.7])
frame['debt'] = val
val_1 = pd.Series([100, 200, 300], index = [0, 1, 3])
frame['pofit'] = val_1
print(frame)

'''现在构建一个布尔值组成的数组,如果state == Mexico,则在FT列输出T,否则为F'''
#构建一个新的列
frame['TF'] = frame.state == 'Mexico'

#删除该列
print(frame.drop(['TF'],axis=1))#可以看出,删了,但没完全删,哈哈哈啊哈
print(frame)

结果:

   years     state  pop  debt  pofit
0   2000  Astrilia  1.5  -1.2  100.0
1   2001    Mexico  3.6  -1.5  200.0
2   2002     China  2.4  -1.7    NaN
3   2003    Mexico  5.1   NaN  300.0
   years     state  pop  debt  pofit     TF
0   2000  Astrilia  1.5  -1.2  100.0  False
1   2001    Mexico  3.6  -1.5  200.0   True
2   2002     China  2.4  -1.7    NaN  False
3   2003    Mexico  5.1   NaN  300.0   True
   years     state  pop  debt  pofit
0   2000  Astrilia  1.5  -1.2  100.0
1   2001    Mexico  3.6  -1.5  200.0
2   2002     China  2.4  -1.7    NaN
3   2003    Mexico  5.1   NaN  300.0
   years     state  pop  debt  pofit     TF
0   2000  Astrilia  1.5  -1.2  100.0  False
1   2001    Mexico  3.6  -1.5  200.0   True
2   2002     China  2.4  -1.7    NaN  False
3   2003    Mexico  5.1   NaN  300.0   True

 注意drop的用法:

类似于append


 总结

del很简单,但是一定要注意使用的格式!谨记!

你可能感兴趣的:(python,知识小点,python,pandas,数据分析)