Global Sensing and Measurements Reuse for Image Compressed Sensing

Global Sensing and Measurements Reuse for Image Compressed Sensing

文章目录

  • Global Sensing and Measurements Reuse for Image Compressed Sensing
    • Abstract
    • Introduction
    • Related work
      • Traditional Compressed Sensing
      • Deep Compressed Sensing
    • Methodology
      • GSM
      • GSM+
      • MRB
      • Loss function
    • Experiments
    • Conclusion
      • Future work

Abstract

现有方法仅仅是从网络中的部分特征获得测量值,并且将其用于图像重建一次。

【Low-level feature: 通常是指图像中的一些小的细节信息,例如边缘(edge),角(corner),颜色(color),像素(pixeles), 梯度(gradients)等,这些信息可以通过滤波器、SIFT或HOG获取;
High level feature:是建立在low level feature之上的,可以用于图像中目标或物体形状的识别和检测,具有更丰富的语义信息。】

所以提出了MR-CCSNet(Measurements Reuse Convolutional Compressed Sensing Network),其中GSM(Global Sensing Module)用于提取所有特征,MRB(Measurements Reuse Block)用于多次重建。

Introduction

GSM

  1. 用卷积层获得高维特征
  2. 通过多个卷积层逐步压缩特征图
  3. 收集网络中所有级别特征
  4. 通过 1 × 1 1\times 1 1×1卷积获得测量值

为了匹配维度,将池层添加到快捷连接中。

MRB

  1. 压缩相位重建(phased reconstructed)结果并获得多个特征图
  2. 从测量中提取匹配信息
  3. 在多尺度上融合它们

实验数据集:BSDS500[2]、Set5[4]、Set14[39]

评估指标:PSNR、SSIM

消融实验:GSM和MRB是有效的

贡献

  1. GSM可以实现有效的采样
  2. MRB:充分利用测量
  3. 构建了基于GSM和MRB的图像CS端到端MR-CSSNet,并测试了有效性

Related work

Traditional Compressed Sensing

即解决sparsity-regularized optimization problem
min ⁡ x 1 2 ∥ Φ x − y ∥ 2 2 + λ ∥ Ψ x ∥ 1 \min_x\frac{1}{2}\Vert\Phi x-y\Vert^2_2 +\lambda\Vert\Psi x\Vert_1 xmin21Φxy22+λΨx1
Ψ x \Psi x Ψx x x x相对于域 Ψ \Psi Ψ的变换系数, Ψ x \Psi x Ψx的稀疏性由 1 1 1范数表示

Deep Compressed Sensing

即用神经网络来求解逆问题,损失函数为
min ⁡ θ 1 2 ∑ i = 1 k ∥ x i − F ( y i , θ ) ∥ 2 2 \min_{\theta}\frac{1}{2}\sum^k_{i=1}\Vert x_i-F(y_i,\theta)\Vert^2_2 θmin21i=1kxiF(yi,θ)22
x i x_i xi是原始图像, y i y_i yi是观测, F F F是神经网络, θ \theta θ是参数

[37]中是LAPRAN,来通过不同分辨率的多个阶段同时重建原始图像。

Methodology

采样率:6.25%

MR-CCSNet:【a sensing network GSM】+【an initial reconstruction network】+【a deep reconstruction network

  1. Obtain the measurements y y y from the sensing network
  2. The initial reconstruction network generates initial reconstructed image by a linear mapping
  3. Refine the initial reconstructed image by a non-linear deep reconstruction network【initial reconstructed image is not enough】
  4. 【stack multiple MRBs in the deep reconstruction network】

Sensing network S ( ⋅ ) S(\cdot) S()(GSM?):

  1. Use convolutional layers for the whole images.【直接对整个图像进行卷积,而不是将图像划分为非重叠块】
  2. There is no bias and activation function.【为了满足线性特性】
  3. y = S ( x ) y=S(x) y=S(x) x ∈ R 1 × H × W x\in\mathbb{R}^{1\times H\times W} xR1×H×W y ∈ R 4 × H 8 × W 8 y\in\mathbb{R}^{4\times\frac{H}{8}\times\frac{W}{8}} yR4×8H×8W

Initial reconstruction network I ( ⋅ ) I(\cdot) I():the first time to utilize the measurements

  1. Depth-wise convolution layer expands the measurements in channel dimension and the shape of channel becomes 64 × H 8 × W 8 64\times\frac{H}{8}\times\frac{W}{8} 64×8H×8W.
  2. Get a 1 × H × W 1\times H\times W 1×H×W tensor by a pixel shuffle layer.

【pixel shuffle layer:一种对低分辨率特征图上采样的思路,假设打算将 H × W × C H\times W\times C H×W×C的特征图在长和宽的维度上扩大 r r r倍变成 r H × r W × C rH\times rW\times C rH×rW×C,则通过深度为 r 2 C r^2C r2C的卷积对 H × W × C H\times W\times C H×W×C的特征图进行卷积得到 H × W × r 2 C H\times W\times r^2C H×W×r2C的特征图,再通过“周期洗牌”的操作变成 r H × r W × C rH\times rW\times C rH×rW×C

【pixel shuffle layer就是输入 H × W H\times W H×W的低分辨率的图像,输出 r H × r W rH\times rW rH×rW的高分辨率的图像】

Deep reconstruction network D ( ⋅ ) D(\cdot) D():the second time to utilize the measurements

  1. Convert the initial reconstructed I ( y ) I(y) I(y) image to a high dimensional feature by a convolutional layer.
  2. Repeat MRBs.
  3. Fuse the MRBs with matching features extracted from measurements y y y multiple times on multi-scale.【用于将它们与多尺度上多次从测量 y y y中提取的匹配特征融合】

Finally

  1. Use a convolutional layer to reconstruct the image from high dimensional features.
  2. Add a shortcut connection to the deep reconstruction network.【shortcut connection是快捷连接,用于解决网络退化问题】

The final reconstructed image x ^ \hat{x} x^
x ^ = D ( I ( y ) ) + I ( y ) \hat{x}=D(I(y))+I(y) x^=D(I(y))+I(y)

Global Sensing and Measurements Reuse for Image Compressed Sensing_第1张图片

GSM

【卷积神经网络以分层方式提取特征,则靠近输入的层学习低级特征,如线条和简单纹理。而深的层学习高级特征,如形状】

  1. First stage:Use 3 × 3 3\times 3 3×3 convolution layers to extract features.
  2. Second stage:Collect all level features in the network.
  3. Use a 1 × 1 1\times 1 1×1 convolution layer to sample, rather than only from the low features (i.e. CSNet+) or high features (i.e. RK-CCSNet).

【To collect all level features for sampling, we use a shortcut connection to pass the features of different layers to the end, and the pooling layer is added for matching the dimensions.】

【采样率变化时,GSM不能很好的适配,故提出GSM+】

Global Sensing and Measurements Reuse for Image Compressed Sensing_第2张图片

GSM+

Different from GSM:

  1. Add a shortcut connection between two successive layers rather than add it from different layers to the end directly.

  2. The building block of GSM+:
    y t + 1 = C o n v ( y t ) + P ( y t ) y_{t+1}=Conv(y_t)+P(y_t) yt+1=Conv(yt)+P(yt)
    Conv and P denote convolution layer and meanpooling layer.

  3. The sampling ratio is controlled by the number of building block and the blue block.

When the sampling ratio is 50 % 50\% 50%, there is only one building block in GSM+, so GSM+ degenerate into GSM.

MRB

Phased recontructed result f t ∈ R C × H × W f_t\in\mathbb{R}^{C\times H\times W} ftRC×H×W and measurements y ∈ R C × H 4 × W 4 y\in\mathbb{R}^{C\times\frac{H}{4}\times\frac{W}{4}} yRC×4H×4W are fed into MRB.

  1. Use two convolutional layers, denoted as C o n v 1 Conv_1 Conv1 and C o n v 2 Conv_2 Conv2, to obtain a compacted feature map f ↓ ∈ R C × H 2 × W 2 f^{\downarrow}\in\mathbb{R}^{C\times\frac{H}{2}\times\frac{W}{2}} fRC×2H×2W and f ↓ ↓ ∈ R C × H 4 × W 4 f^{\downarrow\downarrow}\in\mathbb{R}^{C\times\frac{H}{4}\times\frac{W}{4}} fRC×4H×4W.

  2. f ↓ = C o n v 1 ( f t ) , f ↓ ↓ = C o n v 2 ( f ↓ ) . f^{\downarrow}=Conv_1(f_t),\\ f^{\downarrow\downarrow}=Conv_2(f^{\downarrow}). f=Conv1(ft),f=Conv2(f).

  3. Fig.5 extract matching information from measurements and obtain three feature maps y 1 ∈ R C × H 4 × W 4 y_1\in\mathbb{R}^{C\times\frac{H}{4}\times\frac{W}{4}} y1RC×4H×4W, y 2 ∈ R C × H 2 × W 2 y_2\in\mathbb{R}^{C\times\frac{H}{2}\times\frac{W}{2}} y2RC×2H×2W and y 3 ∈ R C × H × W y_3\in\mathbb{R}^{C\times H\times W} y3RC×H×W by Multi-Scale Reusing.

Global Sensing and Measurements Reuse for Image Compressed Sensing_第3张图片

Global Sensing and Measurements Reuse for Image Compressed Sensing_第4张图片

  1. F 1 = C o n v 3 ( f ↓ ↓ ⊕ y 1 ) F_1=Conv_3(f^{\downarrow\downarrow}\oplus y_1) F1=Conv3(fy1), in the third block. Then copy the f ↓ ↓ f^{\downarrow\downarrow} f and fuse them with F 1 F_1 F1.【怎么fuse的】
  2. 接着pixel shuffle + Conv,即 f ↑ = P i x e l ( C o n v 4 ( F 1 ⊕ f ↓ ↓ ) ) f^{\uparrow}=Pixel(Conv_4(F_1\oplus f^{\downarrow\downarrow})) f=Pixel(Conv4(F1f)),接着与 y 2 y_2 y2进行上述步骤。( F 1 ∈ R C × H 4 × W 4 F_1\in\mathbb{R}^{C\times\frac{H}{4}\times\frac{W}{4}} F1RC×4H×4W, f ↑ ∈ R C × H 2 × W 2 f^{\uparrow}\in\mathbb{R}^{C\times\frac{H}{2}\times\frac{W}{2}} fRC×2H×2W)后面依次下去,得到 f t + 1 ∈ R C × H × W f_{t+1}\in\mathbb{R}^{C\times H\times W} ft+1RC×H×W

对于这块的channel融合不是很理解,如果有大佬明白的话,希望给我讲一下。

Loss function

For the initial reconstruction network, l i n t = ∑ k = 1 n ∥ I ( S ( y k ; θ ) ; ϕ i n t ) − x k ∥ F 2 l_{int}=\sum^n_{k=1}\Vert I(S(y_k;\theta);\phi_{int})-x_k\Vert^2_F lint=k=1nI(S(yk;θ);ϕint)xkF2.

For the deep reconstruction network, l d e e p = ∑ k = 1 n ∥ D ( I ( S ( y k ; θ ) ; ϕ i n t ) ; ϕ d e e p ) − x k ∥ F 2 l_{deep}=\sum^n_{k=1}\Vert D(I(S(y_k;\theta);\phi_{int});\phi_{deep})-x_k\Vert^2_F ldeep=k=1nD(I(S(yk;θ);ϕint);ϕdeep)xkF2

θ \theta θ, ϕ i n t \phi_{int} ϕint, ϕ d e e p \phi_{deep} ϕdeep denote the parameters of S ( ⋅ ) S(\cdot) S(), I ( ⋅ ) I(\cdot) I() and D ( ⋅ ) D(\cdot) D()

The loss of MR-CCSNet is l = l d e e p + l i n t l=l_{deep}+l_{int} l=ldeep+lint.

Experiments

Training datasets: 400 images from BSDS500[2]

Three standard benchmark datasets: Set5[4], Set14[39], BSDS100[2]

Conclusion

Future work

In the sensing network, pooling operation loses information about the low-level features.

Attention mechanism can effectively help us in extracting matching features from measurements.

In the real-world, because there are noise in the measurements, using them multiple times will introduce noise in the reconstruction process.
ching features from measurements.

In the real-world, because there are noise in the measurements, using them multiple times will introduce noise in the reconstruction process.

你可能感兴趣的:(Compressed,Sensing,人工智能)