记录一下代码。
函数输入图像为8位单通道二进制
经过调用HoughLines函数后储存了霍夫线变换检测到线条的输出矢量。每一条线由具有两个元素的矢量(ρ,θ)表示,其中,ρ是离坐标原点(0,0)(也就是图像的左上角)的距离,θ是弧度线条旋转角度(0度表示垂直线,π/2度表示水平线)。 第三个参数,double类型的rho,以像素为单位的距离精度。另一种表述方式是直线搜索时的进步尺寸的单位半径。(Latex中/rho即表示ρ) 第四个参数,double类型的theta,以弧度为单位的角度精度。另一种表述方式是直线搜索时的进步尺寸的单位角度。 第五个参数,int类型的threshold,累加平面的阈值参数,即识别某部分为图中的一条直线时它在累加平面中必须达到的值。大于阈值threshold的线段才可以被检测通过并返回到结果中。
#include "opencv2/core.hpp"
#include
#include "opencv2/video.hpp"
#include "opencv2/videoio.hpp"
#include "opencv2/highgui.hpp"
#include"opencv2/imgproc/imgproc.hpp"
#include
#include
using namespace std;
using namespace cv;
int main()
{
//【1】载入原始图和Mat变量定义
Mat srcImage = imread("/home/heziyi/图片/6.jpg"); //工程目录下应该有一张名为1.jpg的素材图
Mat midImage,dstImage;//临时变量和目标图的定义
//【2】进行边缘检测和转化为灰度图
Canny(srcImage, midImage, 50, 200, 3);//进行一此canny边缘检测
cvtColor(midImage,dstImage, COLOR_GRAY2BGR);//转化边缘检测后的图为灰度图
//【3】进行霍夫线变换
vector<Vec2f> lines;//定义一个矢量结构lines用于存放得到的线段矢量集合
HoughLines(midImage, lines, 1, CV_PI/180, 150, 0, 0 );
for( size_t i = 0; i < lines.size(); i++ )
{
float rho = lines[i][0], theta = lines[i][1];
Point pt1, pt2;
double a = cos(theta), b = sin(theta);
double x0 = a*rho, y0 = b*rho;
pt1.x = cvRound(x0 + 1000*(-b));
pt1.y = cvRound(y0 + 1000*(a));
pt2.x = cvRound(x0 - 1000*(-b));
pt2.y = cvRound(y0 - 1000*(a));
//此句代码的OpenCV2版为:
//line( dstImage, pt1, pt2, Scalar(55,100,195), 1, CV_AA);
//此句代码的OpenCV3版为:
line( dstImage, pt1, pt2, Scalar(55,100,195), 1, LINE_AA);
}
//【5】显示原始图
imshow("【原始图】", srcImage);
//【6】边缘检测后的图
imshow("【边缘检测后的图】", midImage);
//【7】显示效果图
imshow("【效果图】", dstImage);
waitKey(0);
}
此函数在HoughLines的基础上,在末尾加了一个代表Probabilistic(概率)的P,表明它可以采用累计概率霍夫变换(PPHT)来找出二值图像中的直线。 C++: void HoughLinesP(InputArray image, OutputArray lines, double rho, double theta, int threshold, double minLineLength=0, double maxLineGap=0 ) 第一个参数,InputArray类型的image,输入图像,即源图像。需为8位的单通道二进制图像,可以将任意的源图载入进来后由函数修改成此格式后,再填在这里。 第二个参数,InputArray类型的lines,经过调用HoughLinesP函数后存储了检测到的线条的输出矢量,每一条线由具有4个元素的矢量(x_1,y_1,x_2,y_2)表示,其中,(x_1,y_1)和(x_2,y_2)是是每个检测到的线段的结束点。 第三个参数,double类型的rho,以像素为单位的距离精度。另一种表述方式是直线搜索时的进步尺寸的单位半径。 第四个参数,double类型的theta,以弧度为单位的角度精度。另一种表述方式是直线搜索时的进步尺寸的单位角度。 第五个参数,int类型的threshold,累加平面的阈值参数,即识别某部分为图中的一条直线时它在累加平面中必须达到的值。大于阈值threshold的线段才可以被检测通过并返回到结果中。 第六个参数,double类型的minLineLength,有默认值0,表示最低线段的长度,比这个设定参数短的线段就不能被显现出来。 第七个参数,double类型的maxLineGap,有默认值0,允许将同一行点与点之间连接起来的最大的距离。
#include "opencv2/core.hpp"
#include
#include "opencv2/video.hpp"
#include "opencv2/videoio.hpp"
#include "opencv2/highgui.hpp"
#include"opencv2/imgproc/imgproc.hpp"
#include
#include
using namespace std;
using namespace cv;
int main()
{
//【1】载入原始图和Mat变量定义
Mat srcImage = imread("/home/heziyi/图片/6.jpg"); //工程目录下应该有一张名为1.jpg的素材图
Mat midImage,dstImage;//临时变量和目标图的定义
//【2】进行边缘检测和转化为灰度图
Canny(srcImage, midImage, 50, 200, 3);//进行一此canny边缘检测
cvtColor(midImage,dstImage, COLOR_GRAY2BGR);//转化边缘检测后的图为灰度图
//【3】进行霍夫线变换
vector<Vec4i> lines;//定义一个矢量结构lines用于存放得到的线段矢量集合
HoughLinesP(midImage, lines, 1, CV_PI/180, 80, 50, 10 );
//【4】依次在图中绘制出每条线段
for( size_t i = 0; i < lines.size(); i++ )
{
Vec4i l = lines[i];
//此句代码的OpenCV2版为:
//line( dstImage, Point(l[0], l[1]), Point(l[2], l[3]), Scalar(186,88,255), 1, CV_AA);
//此句代码的OpenCV3版为:
line( dstImage, Point(l[0], l[1]), Point(l[2], l[3]), Scalar(186,88,255), 1, LINE_AA);
}
//【5】显示原始图
imshow("【原始图】", srcImage);
//【6】边缘检测后的图
imshow("【边缘检测后的图】", midImage);
//【7】显示效果图
imshow("【效果图】", dstImage);
waitKey(0);
}
findContours()函数用于在二值图像中寻找轮廓。 C++: void findContours(InputOutputArray image, OutputArrayOfArrays contours, OutputArray hierarchy, int mode, int method, Point offset=Point()) 第一个参数,InputArray类型的image,输入图像,即源图像,填Mat类的对象即可,且需为8位单通道图像。 第三个参数,OutputArray类型的hierarchy,可选的输出向量,包含图像的拓扑信息。其作为轮廓数量的表示,包含了许多元素。每个轮廓contours[i]对应4个hierarchy元素hierarchy[i][0]~hierarchy[i][3],分别表示后一个轮廓、前一个轮廓、父轮廓、内嵌轮廓的索引编号。如果没有对应项,对应的hierarchy[i]值设置为负数。 第四个参数,int类型的mode,第五个参数,int类型的method,为轮廓的近似办法,
vector
findContours(image,
contours, //轮廓数组
CV_RETR_EXTERNAL, //获取外轮廓
CV_CHAIN_APPROX_NONE); // 获取每个轮廓的每个像素
例子:
#include "opencv2/core.hpp"
#include
#include "opencv2/video.hpp"
#include "opencv2/videoio.hpp"
#include "opencv2/highgui.hpp"
#include"opencv2/imgproc/imgproc.hpp"
#include
#include
using namespace std;
using namespace cv;
int main()
{
//【1】载入原始图和Mat变量定义
Mat srcImage = imread("/home/heziyi/图片/6.jpg"); //工程目录下应该有一张名为1.jpg的素材图
imshow("原始图",srcImage);
//【2】初始化结果图
Mat dstImage;
Mat midImage;
//【3】srcImage取大于阈值119的那部分
srcImage = srcImage > 119;
imshow( "取阈值后的原始图", srcImage );
//【4】定义轮廓和层次结构
vector<vector<Point> > contours;
vector<Vec4i> hierarchy;
//【5】查找轮廓
//此句代码的OpenCV2版为:
//findContours( srcImage, contours, hierarchy,CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE );
//此句代码的OpenCV3版为:
// Canny(srcImage, midImage, 50, 200, 3);//进行一此canny边缘检测
cvtColor(srcImage,dstImage, COLOR_BGR2GRAY);//转化边缘检测后的图为灰度图
findContours( dstImage, contours, hierarchy,RETR_TREE, CHAIN_APPROX_SIMPLE );
// 【6】遍历所有顶层的轮廓, 以随机颜色绘制出每个连接组件颜色
int index = 0;
for( ; index >= 0; index = hierarchy[index][0] )
{
Scalar color( rand()&255, rand()&255, rand()&255 );
//此句代码的OpenCV2版为:
//drawContours( dstImage, contours, index, color, CV_FILLED, 8, hierarchy );
//此句代码的OpenCV3版为:
drawContours( dstImage, contours, index, color, FILLED, 8, hierarchy ); }
//【7】显示最后的轮廓图
imshow( "轮廓图", dstImage );
waitKey(0);
}
#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include
using namespace std;
using namespace cv;
static void help()
{
cout << "\nThis program demonstrates GrabCut segmentation -- select an object in a region\n"
"and then grabcut will attempt to segment it out.\n"
"Call:\n"
"./grabcut \n"
"\nSelect a rectangular area around the object you want to segment\n" <<
"\nHot keys: \n"
"\tESC - quit the program\n"
"\tr - restore the original image\n"
"\tn - next iteration\n"
"\n"
"\tleft mouse button - set rectangle\n"
"\n"
"\tCTRL+left mouse button - set GC_BGD pixels\n"
"\tSHIFT+left mouse button - set GC_FGD pixels\n"
"\n"
"\tCTRL+right mouse button - set GC_PR_BGD pixels\n"
"\tSHIFT+right mouse button - set GC_PR_FGD pixels\n" << endl;
}
const Scalar RED = Scalar(0,0,255);
const Scalar PINK = Scalar(230,130,255);
const Scalar BLUE = Scalar(255,0,0);
const Scalar LIGHTBLUE = Scalar(255,255,160);
const Scalar GREEN = Scalar(0,255,0);
const int BGD_KEY = EVENT_FLAG_CTRLKEY;
const int FGD_KEY = EVENT_FLAG_SHIFTKEY;
static void getBinMask( const Mat& comMask, Mat& binMask )
{
if( comMask.empty() || comMask.type()!=CV_8UC1 )
CV_Error( Error::StsBadArg, "comMask is empty or has incorrect type (not CV_8UC1)" );
if( binMask.empty() || binMask.rows!=comMask.rows || binMask.cols!=comMask.cols )
binMask.create( comMask.size(), CV_8UC1 );
binMask = comMask & 1;
}
class GCApplication
{
public:
enum{ NOT_SET = 0, IN_PROCESS = 1, SET = 2 };
static const int radius = 2;
static const int thickness = -1;
void reset();
void setImageAndWinName( const Mat& _image, const string& _winName );
void showImage() const;
void mouseClick( int event, int x, int y, int flags, void* param );
int nextIter();
int getIterCount() const { return iterCount; }
private:
void setRectInMask();
void setLblsInMask( int flags, Point p, bool isPr );
const string* winName;
const Mat* image;
Mat mask;
Mat bgdModel, fgdModel;
uchar rectState, lblsState, prLblsState;
bool isInitialized;
Rect rect;
vector<Point> fgdPxls, bgdPxls, prFgdPxls, prBgdPxls;
int iterCount;
};
void GCApplication::reset()
{
if( !mask.empty() )
mask.setTo(Scalar::all(GC_BGD));
bgdPxls.clear(); fgdPxls.clear();
prBgdPxls.clear(); prFgdPxls.clear();
isInitialized = false;
rectState = NOT_SET;
lblsState = NOT_SET;
prLblsState = NOT_SET;
iterCount = 0;
}
void GCApplication::setImageAndWinName( const Mat& _image, const string& _winName )
{
if( _image.empty() || _winName.empty() )
return;
image = &_image;
winName = &_winName;
mask.create( image->size(), CV_8UC1);
reset();
}
void GCApplication::showImage() const
{
if( image->empty() || winName->empty() )
return;
Mat res;
Mat binMask;
if( !isInitialized )
image->copyTo( res );
else
{
getBinMask( mask, binMask );
image->copyTo( res, binMask );
}
vector<Point>::const_iterator it;
for( it = bgdPxls.begin(); it != bgdPxls.end(); ++it )
circle( res, *it, radius, BLUE, thickness );
for( it = fgdPxls.begin(); it != fgdPxls.end(); ++it )
circle( res, *it, radius, RED, thickness );
for( it = prBgdPxls.begin(); it != prBgdPxls.end(); ++it )
circle( res, *it, radius, LIGHTBLUE, thickness );
for( it = prFgdPxls.begin(); it != prFgdPxls.end(); ++it )
circle( res, *it, radius, PINK, thickness );
if( rectState == IN_PROCESS || rectState == SET )
rectangle( res, Point( rect.x, rect.y ), Point(rect.x + rect.width, rect.y + rect.height ), GREEN, 2);
imshow( *winName, res );
}
void GCApplication::setRectInMask()
{
CV_Assert( !mask.empty() );
mask.setTo( GC_BGD );
rect.x = max(0, rect.x);
rect.y = max(0, rect.y);
rect.width = min(rect.width, image->cols-rect.x);
rect.height = min(rect.height, image->rows-rect.y);
(mask(rect)).setTo( Scalar(GC_PR_FGD) );
}
void GCApplication::setLblsInMask( int flags, Point p, bool isPr )
{
vector<Point> *bpxls, *fpxls;
uchar bvalue, fvalue;
if( !isPr )
{
bpxls = &bgdPxls;
fpxls = &fgdPxls;
bvalue = GC_BGD;
fvalue = GC_FGD;
}
else
{
bpxls = &prBgdPxls;
fpxls = &prFgdPxls;
bvalue = GC_PR_BGD;
fvalue = GC_PR_FGD;
}
if( flags & BGD_KEY )
{
bpxls->push_back(p);
circle( mask, p, radius, bvalue, thickness );
}
if( flags & FGD_KEY )
{
fpxls->push_back(p);
circle( mask, p, radius, fvalue, thickness );
}
}
void GCApplication::mouseClick( int event, int x, int y, int flags, void* )
{
// TODO add bad args check
switch( event )
{
case EVENT_LBUTTONDOWN: // set rect or GC_BGD(GC_FGD) labels
{
bool isb = (flags & BGD_KEY) != 0,
isf = (flags & FGD_KEY) != 0;
if( rectState == NOT_SET && !isb && !isf )
{
rectState = IN_PROCESS;
rect = Rect( x, y, 1, 1 );
}
if ( (isb || isf) && rectState == SET )
lblsState = IN_PROCESS;
}
break;
case EVENT_RBUTTONDOWN: // set GC_PR_BGD(GC_PR_FGD) labels
{
bool isb = (flags & BGD_KEY) != 0,
isf = (flags & FGD_KEY) != 0;
if ( (isb || isf) && rectState == SET )
prLblsState = IN_PROCESS;
}
break;
case EVENT_LBUTTONUP:
if( rectState == IN_PROCESS )
{
rect = Rect( Point(rect.x, rect.y), Point(x,y) );
rectState = SET;
setRectInMask();
CV_Assert( bgdPxls.empty() && fgdPxls.empty() && prBgdPxls.empty() && prFgdPxls.empty() );
showImage();
}
if( lblsState == IN_PROCESS )
{
setLblsInMask(flags, Point(x,y), false);
lblsState = SET;
showImage();
}
break;
case EVENT_RBUTTONUP:
if( prLblsState == IN_PROCESS )
{
setLblsInMask(flags, Point(x,y), true);
prLblsState = SET;
showImage();
}
break;
case EVENT_MOUSEMOVE:
if( rectState == IN_PROCESS )
{
rect = Rect( Point(rect.x, rect.y), Point(x,y) );
CV_Assert( bgdPxls.empty() && fgdPxls.empty() && prBgdPxls.empty() && prFgdPxls.empty() );
showImage();
}
else if( lblsState == IN_PROCESS )
{
setLblsInMask(flags, Point(x,y), false);
showImage();
}
else if( prLblsState == IN_PROCESS )
{
setLblsInMask(flags, Point(x,y), true);
showImage();
}
break;
}
}
int GCApplication::nextIter()
{
if( isInitialized )
grabCut( *image, mask, rect, bgdModel, fgdModel, 1 );
else
{
if( rectState != SET )
return iterCount;
if( lblsState == SET || prLblsState == SET )
grabCut( *image, mask, rect, bgdModel, fgdModel, 1, GC_INIT_WITH_MASK );
else
grabCut( *image, mask, rect, bgdModel, fgdModel, 1, GC_INIT_WITH_RECT );
isInitialized = true;
}
iterCount++;
bgdPxls.clear(); fgdPxls.clear();
prBgdPxls.clear(); prFgdPxls.clear();
return iterCount;
}
GCApplication gcapp;
static void on_mouse( int event, int x, int y, int flags, void* param )
{
gcapp.mouseClick( event, x, y, flags, param );
}
int main( int argc, char** argv )
{
cv::CommandLineParser parser(argc, argv, "{@input| /home/heziyi/图片/6.jpg |}");
help();
string filename = parser.get<string>("@input");
if( filename.empty() )
{
cout << "\nDurn, empty filename" << endl;
return 1;
}
Mat image = imread(samples::findFile(filename), IMREAD_COLOR);
if( image.empty() )
{
cout << "\n Durn, couldn't read image filename " << filename << endl;
return 1;
}
const string winName = "image";
namedWindow( winName, WINDOW_AUTOSIZE );
setMouseCallback( winName, on_mouse, 0 );
gcapp.setImageAndWinName( image, winName );
gcapp.showImage();
for(;;)
{
char c = (char)waitKey(0);
switch( c )
{
case '\x1b':
cout << "Exiting ..." << endl;
goto exit_main;
case 'r':
cout << endl;
gcapp.reset();
gcapp.showImage();
break;
case 'n':
int iterCount = gcapp.getIterCount();
cout << "<" << iterCount << "... ";
int newIterCount = gcapp.nextIter();
if( newIterCount > iterCount )
{
gcapp.showImage();
cout << iterCount << ">" << endl;
}
else
cout << "rect must be determined>" << endl;
break;
}
}
exit_main:
destroyWindow( winName );
return 0;
}