算法笔记(六)多尺度特征融合之FPN/PANet

前言

最近论文快deadline了,一直没空更新…今天复习一下多尺度特征融合的常用操作。

1. FPN 特征金字塔

论文:feature pyramid networks for object detection 论文链接

设计思路:

  • 底层的特征语义信息比较少,但是目标位置准确。
  • 高层的特征语义信息比较丰富,但是目标位置比较粗略。

模型设计:自底向上Bottom-up,自顶向下Top-down,横向连接Lateral connection。
算法笔记(六)多尺度特征融合之FPN/PANet_第1张图片

  • 自底向上:特征图随着左半部分的网络的加深,尺寸会不断变小,语义信息会更加丰富,这里是将每个stage(尺寸不变的网络集合为一个stage)的最后一个特征图构成特征金字塔。
  • 自顶向下:通过upsampling的方法,不断放大特征图,使得低层特征也包含丰富的语义信息。
  • 横向连接:将上采样的结果和自底向上生成的相同大小的特征图进行融合。即:从左边过来的特征图,先经过1*1的卷积操作,然后与上面下来的特征图相加(element-wise addition),之后再经过3*3的卷积能得到本层的特征输出(消除上采样产生的混叠效应aliasing effect:插值生成的图像灰度不连续,在灰度变化的地方可能出现明显的锯齿状)。

FPN+RPN

原先的RPN网络,输入的是经过主干网络提取的特征图(单尺度),设置的anchor有3种尺寸,3种宽高比,故有9种anchor:

算法笔记(六)多尺度特征融合之FPN/PANet_第2张图片

加入了FPN后,RPN的输入是多尺度特征图,也就是每一层特征图后连接一个RPN head,因为已经有多尺度特征图了,就不需要设置另外3种尺寸,故有15种anchor:
算法笔记(六)多尺度特征融合之FPN/PANet_第3张图片

FPN+ROI

ROI的作用是将输入的(检测框,整特征图)进行pooling,得到相同尺寸的目标特征图。使用了FPN之后,就有了多尺度特征图,考虑到实际目标有大有小,所以使用下公式判断将哪一层的特征图输入到ROI中:
k = ⌊ k 0 + l o g 2 ( w ∗ h 224 ) ⌋ k=\lfloor{k_0+log_2(\frac{\sqrt{w*h}}{224})}\rfloor k=k0+log2(224wh )
其中, k k k代表特征图的层数编号。

2. PANet

Pyramid Attention Networks for Image Restoration
论文地址

PANet是FPN(图a)的拓展,PANet创新点在于:

  1. 加入了自底向上路线增强;
  2. 加入了自适应特征池化。
算法笔记(六)多尺度特征融合之FPN/PANet_第4张图片
  • Bottom-up Path Augmentation
    可以看到图(a)的FPN是自顶向下路线,通过侧向连接,将高层的强语义特征传递下来,只增强了特征金字塔的语义信息。例如,当底层特征到到P5时(红线),中间经过非常多层的网络(100+),此时底层的目标信息已经非常模糊了,因此扩展了FPN,加入了自底向上的路线(绿色路线,底层->P2->N2~N5,其中经过的路径少于10层),弥补并加强了定位信息。

  • Adaptive Feature Pooling
    前文中,使用FPN+ROI的方法是使用公式来选择FPN的特征图(P2~P5)的其中之一(例如小尺寸选择P2,大尺寸选择了P5)作为ROI的输入,而这种方法实际上也是单层的特征图。在这里,作者对多个特征图(N2~N5)和目标框进行ROI,然后对多个ROI结果(4个),分别经过全连接(fc1)后,再进行融合(sum、max、product等),如图所示:
    算法笔记(六)多尺度特征融合之FPN/PANet_第5张图片

参考

https://zhuanlan.zhihu.com/p/62604038

你可能感兴趣的:(算法笔记,计算机视觉,算法,深度学习,pytorch)