metrics用于判断模型性能。度量函数类似于损失函数,只是度量的结果不用于训练模型。可以使用任何损失函数作为度量(如logloss等)。在训练期间监控metrics的最佳方式是通过Tensorboard。
官方提供的metrics最重要的概念就是有状态(stateful)变量,通过更新状态变量,可以不断累积统计数据,并可以随时输出状态变量的计算结果。这是区别于losses的重要特性,losses是无状态的(stateless)。
本文部分内容参考了:
代码运行环境为:tf.__version__==2.6.2 。
metrics是有状态的(stateful),即Metric 实例会存储、记录和返回已经累积的结果,有助于未来事务的信息。下面以tf.keras.metrics.Mean()
为例进行解释:
创建tf.keras.metrics.Mean
的实例:
m = tf.keras.metrics.Mean()
通过help(m)
可以看到MRO为:
Mean
Reduce
Metric
keras.engine.base_layer.Layer
...
可见Metric和Mean是 keras.layers.Layer
的子类。相比于类Layer,其子类Mean多出了几个方法:
m.result()
,就是计算均值并返回。m
目前累积的数字总和m
目前累积的数字个数(m.total/m.count
就是m.result()
的返回值)m.update_state
都会更新m.total
和m.count
;这也决定了Mean的特殊性质。其使用参见如下代码:
# 创建状态变量m,由于m未刚初始化,
# 所以total,count和result()均为0
m = tf.keras.metrics.Mean()
print("m.total:",m.total)
print("m.count:",m.count)
print("m.result():",m.result())
"""
# 输出:
m.total:
m.count:
m.result(): tf.Tensor(0.0, shape=(), dtype=float32)
"""
# 更新状态变量,可以看到total累加了总和,
# count累积了个数,result()返回total/count
m.update_state([1,2,3])
print("m.total:",m.total)
print("m.count:",m.count)
print("m.result():",m.result())
"""
# 输出:
m.total:
m.count:
m.result(): tf.Tensor(2.0, shape=(), dtype=float32)
"""
# 重置状态变量, 重置到初始化状态
m.reset_state()
print("m.total:",m.total)
print("m.count:",m.count)
print("m.result():",m.result())
"""
# 输出:
m.total:
m.count:
m.result(): tf.Tensor(0.0, shape=(), dtype=float32)
"""
与损失函数类似,任何带有类似于metric_fn(y_true, y_pred)
、返回损失数组(如输入一个batch的数据,会返回一个batch的损失标量)的函数,都可以作为metric传递给compile()
:
import tensorflow as tf
import numpy as np
inputs = tf.keras.Input(shape=(3,))
x = tf.keras.layers.Dense(4, activation=tf.nn.relu)(inputs)
outputs = tf.keras.layers.Dense(1, activation=tf.nn.softmax)(x)
model1 = tf.keras.Model(inputs=inputs, outputs=outputs)
def my_metric_fn(y_true, y_pred):
squared_difference = tf.square(y_true - y_pred)
return tf.reduce_mean(squared_difference, axis=-1) # shape=(None,)
model1.compile(optimizer='adam', loss='mse', metrics=[my_metric_fn])
x = np.random.random((100, 3))
y = np.random.random((100, 1))
model1.fit(x, y, epochs=3)
输出:
Epoch 1/3
4/4 [==============================] - 0s 667us/step - loss: 0.0971 - my_metric_fn: 0.0971
Epoch 2/3
4/4 [==============================] - 0s 667us/step - loss: 0.0958 - my_metric_fn: 0.0958
Epoch 3/3
4/4 [==============================] - 0s 1ms/step - loss: 0.0946 - my_metric_fn: 0.0946
注意,因为本例创建的是无状态的度量,所以上面跟踪的度量值(my_metric_fn后面的值)是每个batch的平均度量值,并不是一个epoch(完整数据集)的累积值。(这一点需要理解,这也是为什么要使用有状态度量的原因!)
值得一提的是,如果上述代码使用
model1.compile(optimizer='adam', loss='mse', metrics=["mse"])
进行compile,则输出的结果是累积的,在每个epoch结束时的结果就是整个数据集的结果,因为metrics=["mse"]
是直接调用了标准库的有状态度量。
如果想查看整个数据集的指标,就需要传入有状态的metrics,这样就会在一个epoch内累加,并在epoch结束时输出整个数据集的度量值。
创建有状态度量指标,需要创建Metric的子类,它可以跨batch维护状态,步骤如下:
__init__
中创建状态变量(state variables)update_state()
中y_true
和y_pred
的变量result()
中返回标量度量结果reset_states()
中清除状态class BinaryTruePositives(tf.keras.metrics.Metric):
def __init__(self, name='binary_true_positives', **kwargs):
super(BinaryTruePositives, self).__init__(name=name, **kwargs)
self.true_positives = self.add_weight(name='tp', initializer='zeros')
def update_state(self, y_true, y_pred, sample_weight=None):
y_true = tf.cast(y_true, tf.bool)
y_pred = tf.cast(y_pred, tf.bool)
values = tf.logical_and(tf.equal(y_true, True), tf.equal(y_pred, True))
values = tf.cast(values, self.dtype)
if sample_weight is not None:
sample_weight = tf.cast(sample_weight, self.dtype)
values = tf.multiply(values, sample_weight)
self.true_positives.assign_add(tf.reduce_sum(values))
def result(self):
return self.true_positives
def reset_states(self):
self.true_positives.assign(0)
m = BinaryTruePositives()
m.update_state([0, 1, 1, 1], [0, 1, 0, 0])
print('Intermediate result:', float(m.result()))
m.update_state([1, 1, 1, 1], [0, 1, 1, 0])
print('Final result:', float(m.result()))
add_metric
方法是 tf.keras.layers.Layer
类添加的方法,Layer的父类tf.Module
并没有这个方法,因此在编写Layer子类如包括自定义层、官方提供的层(Dense)或模型(tf.keras.Model也是Layer的子类)时,可以使用add_metric()
来与层相关的统计量。比如,将类似Dense的自定义层的激活平均值记录为metric。可以执行以下操作:
class DenseLike(Layer):
"""y = w.x + b"""
...
def call(self, inputs):
output = tf.matmul(inputs, self.w) + self.b
self.add_metric(tf.reduce_mean(output), aggregation='mean', name='activation_mean')
return output
将在名称为activation_mean的度量下跟踪output,跟踪的值为每个批次度量值的平均值。
更详细的信息,参阅官方文档The base Layer class - add_metric method。
Keras-Metrics官方文档