SPFA算法模版+邻接表实现

SPFA即shotest path faster algorithm,由意思就可以看出该算法效率比较高。

其实SPFA就是bellman-ford算法的一个优化。

具体做法是用一个队列保存待松弛的点,然后对于每个出队的点依次遍历每个与他有边相邻的点(用邻接表效率较高),如果该点可以松弛并且队列中没有该点则将它加入队列中,如此迭代直到队列为空。

据说平均效率是O(E),可见对边稀疏的图用此算法效果是相当可观的。

 

若要判负环路,则记录一个点的入队次数,若超过边数,则有负权环。

 

#include  < iostream >
#include 
< queue >
using   namespace  std;

const   long  MAXN = 10000 ;
const   long  lmax = 0x7FFFFFFF ;

typedef 
struct   
{
    
long v;
    
long next;
    
long cost;
}
Edge;


Edge e[MAXN];
long  p[MAXN];
long  Dis[MAXN];
bool  vist[MAXN];

queue
< long >  q;

long  m,n; // 点,边
void  init()
{
    
long i;
    
long eid=0;

    memset(vist,
0,sizeof(vist));
    memset(p,
-1,sizeof(p));
    fill(Dis,Dis
+MAXN,lmax);

    
while (!q.empty())
    
{
        q.pop();
    }


    
for (i=0;i<n;++i)
    
{
        
long from,to,cost;
        scanf(
"%ld %ld %ld",&from,&to,&cost);

        e[eid].next
=p[from];
        e[eid].v
=to;
        e[eid].cost
=cost;
        p[from]
=eid++;

        
//以下适用于无向图
        swap(from,to);
        
        e[eid].next
=p[from];
        e[eid].v
=to;
        e[eid].cost
=cost;
        p[from]
=eid++;

    }

}


void  print( long  End)
{
    
//若为lmax 则不可达
    printf("%ld\n",Dis[End]);    
}


void  SPF()
{

    init();

    
long Start,End;
    scanf(
"%ld %ld",&Start,&End);
    Dis[Start]
=0;
    vist[Start]
=true;
    q.push(Start);

    
while (!q.empty())
    
{
        
long t=q.front();
        q.pop();
        vist[t]
=false;
        
long j;
        
for (j=p[t];j!=-1;j=e[j].next)
        
{
            
long w=e[j].cost;
            
if (w+Dis[t]<Dis[e[j].v])
            
{
                Dis[e[j].v]
=w+Dis[t];
                
if (!vist[e[j].v])
                
{
                    vist[e[j].v]
=true;
                    q.push(e[j].v);
                }

            }

        }

    }


    print(End);

}


int  main()
{
    
while (scanf("%ld %ld",&m,&n)!=EOF)
    
{
        SPF();
    }

    
return 0;
}

你可能感兴趣的:(SPFA)