作为机器学习科学家,我们的目标是发现模式(pattern)。 但是,我们如何才能确定模型是真正发现了一种泛化的模式, 而不是简单地记住了数据呢? 例如,我们想要在患者的基因数据与痴呆状态之间寻找模式, 其中标签是从集合{痴呆,轻度认知障碍,健康}
中提取的。 因为基因可以唯一确定每个个体(不考虑双胞胎), 所以在这个任务中是有可能记住整个数据集的。
我们不想让模型只会做这样的事情:“那是鲍勃!我记得他!他有痴呆症!”。 原因很简单:当我们将来部署该模型时,模型需要判断从未见过的患者。 只有当模型真正发现了一种泛化模式时,才会作出有效的预测。
更正式地说,我们的目标是发现某些模式, 这些模式捕捉到了我们训练集潜在总体的规律。 如果成功做到了这点,即使是对以前从未遇到过的个体, 模型也可以成功地评估风险。 如何发现可以泛化的模式是机器学习的根本问题。
困难在于,当我们训练模型时,我们只能访问数据中的小部分样本。 最大的公开图像数据集包含大约一百万张图像。 而在大部分时候,我们只能从数千或数万个数据样本中学习。 在大型医院系统中,我们可能会访问数十万份医疗记录。 当我们使用有限的样本时,可能会遇到这样的问题: 当收集到更多的数据时,会发现之前找到的明显关系并不成立。
将模型在训练数据上拟合的比在潜在分布中更接近的现象称为过拟合(overfitting), 用于对抗过拟合的技术称为正则化(regularization)。
在前面的章节中,你可能在用Fashion-MNIST数据集做实验时已经观察到了这种过拟合现象。
在实验中调整模型架构或超参数时,你会发现: 如果有足够多的神经元、层数和训练迭代周期, 模型最终可以在训练集上达到完美的精度,此时测试集的准确性却下降了。
训练误差(training error)是指, 模型在训练数据集上计算得到的误差。
泛化误差(generalization error)是指, 模型应用在同样从原始样本的分布中抽取的无限多数据样本时,模型误差的期望。
问题是,我们永远不能准确地计算出泛化误差。 这是因为无限多的数据样本是一个虚构的对象。 在实际中,我们只能通过将模型应用于一个独立的测试集来估计泛化误差, 该测试集由随机选取的、未曾在训练集中出现的数据样本构成。
下面的三个思维实验将有助于更好地说明这种情况。
假设一个大学生正在努力准备期末考试。 一个勤奋的学生会努力做好练习,并利用往年的考试题目来测试自己的能力。 尽管如此,在过去的考试题目上取得好成绩并不能保证他会在真正考试时发挥出色。 例如,学生可能试图通过死记硬背考题的答案来做准备。 他甚至可以完全记住过去考试的答案。 另一名学生可能会通过试图理解给出某些答案的原因来做准备。 在大多数情况下,后者会考得更好。
类似地,考虑一个简单地使用查表法来回答问题的模型。 如果允许的输入集合是离散的并且相当小, 那么也许在查看许多训练样本后,该方法将执行得很好。 但当这个模型面对从未见过的例子时,它表现的可能比随机猜测好不到哪去。 这是因为输入空间太大了,远远不可能记住每一个可能的输入所对应的答案。 例如,考虑 28 × 28 28\times 28 28×28的灰度图像。 如果每个像素可以 256 256 256个灰度值中的一个, 则有 25 6 784 256^{784} 256784个可能的图像。 这意味着指甲大小的低分辨率灰度图像的数量比宇宙中的原子要多得多。 即使我们可能遇到这样的数据,我们也不可能存储整个查找表。
最后,考虑对掷硬币的结果(类别0:正面,类别1:反面)进行分类的问题。 假设硬币是公平的,无论我们想出什么算法,泛化误差始终是 1 2 \frac{1}{2} 21。 然而,对于大多数算法,我们应该期望训练误差会更低(取决于运气)。 考虑数据集{0,1,1,1,0,1}。 我们的算法不需要额外的特征,将倾向于总是预测多数类, 从我们有限的样本来看,它似乎是1占主流。 在这种情况下,总是预测类1的模型将产生 1 3 \frac{1}{3} 31
的误差, 这比我们的泛化误差要好得多。 当我们逐渐增加数据量,正面比例明显偏离 1 2 \frac{1}{2} 21的可能性将会降低, 我们的训练误差将与泛化误差相匹配。
当我们有简单的模型和大量的数据时,我们期望泛化误差与训练误差相近。
当我们有更复杂的模型和更少的样本时,我们预计训练误差会下降,但泛化误差会增大。
模型复杂性由什么构成是一个复杂的问题。 一个模型是否能很好地泛化取决于很多因素。 例如,具有更多参数的模型可能被认为更复杂, 参数有更大取值范围的模型可能更为复杂。 通常对于神经网络,我们认为需要更多训练迭代的模型比较复杂, 而需要“早停”(early stopping)的模型(即较少训练迭代周期)就不那么复杂。
我们很难比较本质上不同大类的模型之间(例如,决策树与神经网络)的复杂性。 就目前而言,一条简单的经验法则相当有用: 统计学家认为,能够轻松解释任意事实的模型是复杂的, 而表达能力有限但仍能很好地解释数据的模型可能更有现实用途。
在本节中,为了给你一些直观的印象,我们将重点介绍几个倾向于影响模型泛化的因素:
可调整参数的数量。当可调整参数的数量(有时称为自由度)很大时,模型往往更容易过拟合
参数采用的值。当权重的取值范围较大时,模型可能更容易过拟合
训练样本的数量。即使你的模型很简单,也很容易过拟合只包含一两个样本的数据集。而过拟合一个有数百万个样本的数据集则需要一个极其灵活的模型
在机器学习中,我们通常在评估几个候选模型后选择最终的模型。 这个过程叫做模型选择。 有时,需要进行比较的模型在本质上是完全不同的(比如,决策树与线性模型)。 又有时,我们需要比较不同的超参数设置下的同一类模型。
例如,训练多层感知机模型时,我们可能希望比较具有 不同数量的隐藏层、不同数量的隐藏单元以及不同的激活函数组合的模型。 为了确定候选模型中的最佳模型,我们通常会使用验证集。
原则上,在我们确定所有的超参数之前,我们不希望用到测试集。
如果我们在模型选择过程中使用测试数据,可能会有过拟合测试数据的风险,那就麻烦大了。
如果我们过拟合了训练数据,还可以在测试数据上的评估来判断过拟合。
但是如果我们过拟合了测试数据,我们又该怎么知道呢?
因此,我们决不能依靠测试数据进行模型选择。 然而,我们也不能仅仅依靠训练数据来选择模型,因为我们无法估计训练数据的泛化误差。
在实际应用中,情况变得更加复杂。 虽然理想情况下我们只会使用测试数据一次, 以评估最好的模型或比较一些模型效果,但现实是测试数据很少在使用一次后被丢弃。 我们很少能有充足的数据来对每一轮实验采用全新测试集。
解决此问题的常见做法是将我们的数据分成三份, 除了训练和测试数据集之外,还增加一个验证数据集(validation dataset), 也叫验证集(validation set)。
但现实是验证数据和测试数据之间的边界模糊得令人担忧。
除非另有明确说明,否则在这本书的实验中, 我们实际上是在使用应该被正确地称为训练数据和验证数据的数据集, 并没有真正的测试数据集。 因此,书中每次实验报告的准确度都是验证集准确度,而不是测试集准确度。
当训练数据稀缺时,我们甚至可能无法提供足够的数据来构成一个合适的验证集。 这个问题的一个流行的解决方案是采用 K K K折交叉验证。
这里,原始训练数据被分成 K K K个不重叠的子集。 然后执行 K K K次模型训练和验证,每次在 K − 1 K-1 K−1个子集上进行训练, 并在剩余的一个子集(在该轮中没有用于训练的子集)上进行验证。
最后,通过对 K K K次实验的结果取平均来估计训练和验证误差。
当我们比较训练和验证误差时,我们要注意两种常见的情况。
首先,我们要注意这样的情况:训练误差和验证误差都很严重, 但它们之间仅有一点差距。 如果模型不能降低训练误差,这可能意味着模型过于简单(即表达能力不足), 无法捕获试图学习的模式。 此外,由于我们的训练和验证误差之间的泛化误差很小, 我们有理由相信可以用一个更复杂的模型降低训练误差。 这种现象被称为欠拟合(underfitting)。
另一方面,当我们的训练误差明显低于验证误差时要小心, 这表明严重的过拟合(overfitting)。 注意,过拟合并不总是一件坏事。 特别是在深度学习领域,众所周知, 最好的预测模型在训练数据上的表现往往比在保留(验证)数据上好得多。 最终,我们通常更关心验证误差,而不是训练误差和验证误差之间的差距。
是否过拟合或欠拟合可能取决于模型复杂性和可用训练数据集的大小。
为了说明一些关于过拟合和模型复杂性的经典直觉, 我们给出一个多项式的例子。
给定由单个特征 x x x和对应实数标签 y y y组成的训练数据, 我们试图找到下面的 d d d阶多项式来估计标签 y y y。
y ^ = ∑ i = 0 d x i w i \hat{y}=\sum_{i=0}^dx^iw_i y^=i=0∑dxiwi
这只是一个线性回归问题,我们的特征是 x x x的幂给出的, 模型的权重是 w i w_i wi给出的,偏置是 w 0 w_0 w0给出的 (因为对于所有的 x x x都有 x 0 = 1 x^0=1 x0=1。) 由于这只是一个线性回归问题,我们可以使用平方误差作为我们的损失函数。
高阶多项式函数比低阶多项式函数复杂得多。 高阶多项式的参数较多,模型函数的选择范围较广。 因此在固定训练数据集的情况下, 高阶多项式函数相对于低阶多项式的训练误差应该始终更低(最坏也是相等)。 事实上,当数据样本包含了 x x x的不同值时, 函数阶数等于数据样本数量的多项式函数可以完美拟合训练集。 下图中,我们直观地描述了多项式的阶数和欠拟合与过拟合之间的关系:
另一个重要因素是数据集的大小。 训练数据集中的样本越少,我们就越有可能(且更严重地)过拟合。 随着训练数据量的增加,泛化误差通常会减小。 此外,一般来说,更多的数据不会有什么坏处。 对于固定的任务和数据分布,模型复杂性和数据集大小之间通常存在关系。 给出更多的数据,我们可能会尝试拟合一个更复杂的模型。 能够拟合更复杂的模型可能是有益的。 如果没有足够的数据,简单的模型可能更有用。 对于许多任务,深度学习只有在有数千个训练样本时才优于线性模型。 从一定程度上来说,深度学习目前的生机要归功于 廉价存储、互联设备以及数字化经济带来的海量数据集。