import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # 不显示等级2以下的提示信息
import zipfile
import csv
import numpy as np
import tensorflow as tf
from tensorflow.keras.preprocessing.image import ImageDataGenerator
# 解压
local_zip1 = 'E:/Python/pythonProject_1/sign_language_mnist/tmp/sign_mnist_train.zip' # 数据集压缩包路径
zip_ref1 = zipfile.ZipFile(local_zip1, 'r') # 打开压缩包,以读取方式
zip_ref1.extractall('E:/Python/pythonProject_1/sign_language_mnist/tmp/sign_mnist_train/') # 解压到以下路径
zip_ref1.close()
local_zip2 = 'E:/Python/pythonProject_1/sign_language_mnist/tmp/sign_mnist_test.zip' # 数据集压缩包路径
zip_ref2 = zipfile.ZipFile(local_zip2, 'r') # 打开压缩包,以读取方式
zip_ref2.extractall('E:/Python/pythonProject_1/sign_language_mnist/tmp/sign_mnist_test/') # 解压到以下路径
zip_ref2.close()
# # 从google.colab数据库加载文件
# from google.colab import files
#
#
# uploaded = files.upload()
def get_data(filename):
with open(filename) as training_file:
csv_reader = csv.reader(training_file, delimiter= ',')
# csv.reader(file, delimiter=',', quotechar='"')
# delimiter是分隔符,quotechar是引用符,当一段话中出现分隔符的时候,用引用符将这句话括起来,就能排除歧义。
first_line = True
temp_images = []
temp_labels = []
for row in csv_reader:
if first_line:
# print("Ignoring first line")
first_line = False # 让for循环跳过第一行数据
else:
temp_labels.append(row[0])
image_data = row[1:785]
image_data_as_array = np.array_split(image_data, 28) # 将一维ndarray格式转换成size为28*28的ndarray格式
temp_images.append(image_data_as_array) # 将一维数组添加到list中
images = np.array(temp_images).astype('float') # 将list格式转换为ndarray三维格式
labels = np.array(temp_labels).astype('float')
return images, labels
training_images, training_labels = get_data('E:/Python/pythonProject_1/sign_language_mnist/tmp/sign_mnist_train/sign_mnist_train.csv')
testing_images, testing_labels = get_data('E:/Python/pythonProject_1/sign_language_mnist/tmp/sign_mnist_test/sign_mnist_test.csv')
# 保存处理后的数据
np.save("E:/Python/pythonProject_1/sign_language_mnist/tmp/sign_mnist_train/training_images.npy",training_images)
np.save("E:/Python/pythonProject_1/sign_language_mnist/tmp/sign_mnist_train/training_labels.npy",training_labels)
np.save("E:/Python/pythonProject_1/sign_language_mnist/tmp/sign_mnist_test/testing_images.npy",testing_images)
np.save("E:/Python/pythonProject_1/sign_language_mnist/tmp/sign_mnist_test/testing_labels.npy",testing_labels)
print(training_images.shape)
print(training_labels.shape)
print(testing_images.shape)
print(testing_labels.shape)
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # 不显示等级2以下的提示信息
# import shutil
# import random
import tensorflow as tf
# from tensorflow import keras
from tensorflow.keras.preprocessing.image import ImageDataGenerator
# from shutil import copyfile
# import matplotlib.image as mpimg
import matplotlib.pyplot as plt
import numpy as np
# 数据加载
training_images = np.load("E:/Python/pythonProject_1/sign_language_mnist/tmp/sign_mnist_train/training_images.npy")
training_labels = np.load("E:/Python/pythonProject_1/sign_language_mnist/tmp/sign_mnist_train/training_labels.npy")
testing_images = np.load("E:/Python/pythonProject_1/sign_language_mnist/tmp/sign_mnist_test/testing_images.npy")
testing_labels = np.load("E:/Python/pythonProject_1/sign_language_mnist/tmp/sign_mnist_test/testing_labels.npy")
# 数据预处理
training_images = np.expand_dims(training_images, axis=3) # 将三维数组扩展到4维
testing_images = np.expand_dims(testing_images, axis=3)
training_datagen = ImageDataGenerator(
# 数据增强
rescale=1. / 255,
rotation_range=40, # 旋转范围
width_shift_range=0.2, # 宽平移
height_shift_range=0.2,# 高平移
shear_range=0.2, # 剪切
zoom_range=0.2, # 缩放
horizontal_flip=True,
fill_mode='nearest'
)
validation_datagen = ImageDataGenerator(
rescale=1. / 255
)
print(training_images.shape)
print(testing_images.shape)
#======== 模型构建 =========
model = tf.keras.models.Sequential([
tf.keras.layers.Conv2D(64, (3, 3), activation = 'relu', input_shape = (28, 28, 1)), # 输入参数:过滤器数量,过滤器尺寸,激活函数:relu, 输入图像尺寸
tf.keras.layers.MaxPooling2D(2, 2), # 池化:增强特征
tf.keras.layers.Conv2D(64, (3, 3), activation = 'relu'), # 输入参数:过滤器数量、过滤器尺寸、激活函数:relu
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Flatten(), # 输入层
tf.keras.layers.Dense(128, activation = 'relu'), # 全连接隐层 神经元数量:128 ,激活函数:relu
tf.keras.layers.Dense(26, activation = 'softmax') # 英文字母分类 26 ,阿拉伯数字分类 10 输出用的是softmax 概率化函数 使得所有输出加起来为1 0-1之间
])
#======== 模型参数编译 =========
model.compile(
optimizer = 'adam',
loss = 'sparse_categorical_crossentropy', # 损失函数: 稀疏的交叉熵 binary_crossentropy
metrics = ['accuracy']
)
#======== 模型训练 =========
# Note that this may take some time.
history = model.fit_generator(
training_datagen.flow(training_images, training_labels,batch_size=32),
steps_per_epoch=len(training_images) / 32,
epochs = 15,
validation_data=validation_datagen.flow(testing_images, testing_labels,batch_size=32),
validation_steps=len(testing_images) / 32
)
model.save('E:/Python/pythonProject_1/sign_language_mnist/model.h5') # model 保存
model.evaluate(testing_images, testing_labels )# 数据(data)和金标准(label),然后将预测结果与金标准相比较,得到两者误差并输出.
#-----------------------------------------------------------
# Retrieve a list of list result on training and test data
# set for each training epoch
#-----------------------------------------------------------
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs = range(len(acc)) # Get number of epochs
#-----------------------------------------------------------
# Plot training and validation accuracy per epoch
#-----------------------------------------------------------
plt.plot(epochs, acc, 'r', label = "tra_acc")
plt.plot(epochs ,val_acc, 'b', label = "val_acc")
plt.title("training and validation accuracy")
plt.legend()
plt.grid(ls='--') # 生成网格
plt.show()
# 曲线呈直线是因为epochs/轮次太少
#-----------------------------------------------------------
# Plot training and validation loss per epoch
#-----------------------------------------------------------
plt.plot(epochs, loss, 'r', label = "train_loss")
plt.plot(epochs ,val_loss, 'b', label = "val_loss")
plt.title("training and validation loss")
plt.legend()
plt.grid(ls='--') # 生成网格
plt.show()
# 曲线呈直线是因为epochs/轮次太少
Epoch 15/15
858/857 [==============================] - 25s 29ms/step - loss: 0.7643 - accuracy: 0.7437 - val_loss: 0.3325 - val_accuracy: 0.8799
225/225 [==============================] - 1s 6ms/step - loss: 240.8037 - accuracy: 0.6163
# -*- coding: UTF-8 -*-
import numpy as np
import matplotlib.image as mpig
from tensorflow import keras
from PIL import Image
model = keras.models.load_model('E:/Python/pythonProject_1/sign_language_mnist/model.h5')
im = Image.open('E:/Python/pythonProject_1/sign_language_mnist/25.png')
im_resized = im.resize((28, 28))
img = im_resized.convert('L')
img.save('E:/Python/pythonProject_1/sign_language_mnist/25.png')
img = mpig.imread('E:/Python/pythonProject_1/sign_language_mnist/25.png')
img = img * 255
img = img.astype(np.float64)
images = np.expand_dims(img, axis=0) # 将三维数组扩展到3维
images = np.expand_dims(images, axis=3) # 将三维数组扩展到4维
classes = model.predict(images, batch_size=26)
result = np.argmax(classes, axis=1)
print(result)
24号美式字母手势,代表字母“Y”
24种美式字母手势
预处理后:
>>> print(result)
[24]
数据库链接:https://www.kaggle.com/datamunge/sign-language-mnist