- 国产海光CPU平台兼容性指南-基础软件分册-20231013(附各系统下载链接)
技术瘾君子1573
服务器&存储服务器兼容列表海光CPU云计算大数据操作系统
目录声明一、操作系统二、虚拟化和云2.1虚拟化和云2.2虚拟机上的操作系统2.2.1VMwarevSphere上的虚拟机操作系统2.2.2KVM上的虚拟机操作系统2.2.3WindowsHyper-V上的虚拟机操作系统2.2.4VirtualBox上的虚拟机操作系统三、分布式存储四、数据库五、中间件六、大数据七、平台组件7.1云平台7.2大数据平台7.3人工智能平台7.4科学与工程计算平台八、其它
- 企业如何打造高效智能问答系统?一文详解架构与实现!
功城师
大语言模型自然语言处理LLM人工智能智能问答RAGAgent
随着人工智能技术的不断发展,智能问答系统成为越来越多企业提升客户服务、知识管理与内部沟通的关键工具。今天我们将深入解析一套智能问答系统的设计思路与技术架构,帮助大家更好地理解如何利用这一系统在实际场景中高效运作。一、智能问答系统的整体架构这套智能问答系统分为前台、AI服务和后台三个核心部分,每个部分承担着不同的职责,分别负责用户交互、问题处理与数据支持。通过这种模块化的设计,整个系统的工作流程得以
- ACNet:深度学习中的自适应卷积网络新星
郎轶诺
ACNet:深度学习中的自适应卷积网络新星项目地址:https://gitcode.com/gh_mirrors/ac/ACNet在深度学习领域,卷积神经网络(CNN)一直是图像处理和计算机视觉任务的核心技术。然而,传统的固定大小的卷积核无法灵活适应不同区域的信息密度。针对这一问题,ACNet(AdaptiveConvolutionNetwork)项目应运而生,它引入了一种新型的自适应卷积层,旨在
- 与机器学习的邂逅--自适应神经网络结构的深度解析
想成为高手499
机器学习与人工智能机器学习神经网络人工智能
引言随着人工智能的发展,神经网络已成为许多应用领域的重要工具。自适应神经网络(AdaptiveNeuralNetworks,ANN)因其出色的学习能力和灵活性,逐渐成为研究的热点。本文将详细探讨自适应神经网络的基本概念、工作原理、关键技术、C++实现示例及其应用案例,最后展望未来的发展趋势。自适应神经网络的基本概念什么是自适应神经网络?自适应神经网络是一种能够根据输入数据的变化和环境的动态特性自动
- 自适应神经网络架构:原理解析与代码示例
chian-ocean
机器学习神经网络人工智能深度学习
个人主页:chian-ocean文章专栏自适应神经网络结构:深入探讨与代码实现1.引言随着深度学习的不断发展,传统神经网络模型在处理复杂任务时的局限性逐渐显现。固定的网络结构和参数对于动态变化的环境和多样化的数据往往难以适应,导致了过拟合或欠拟合的问题。自适应神经网络(AdaptiveNeuralNetworks,ANN)为此提供了一种新的解决方案,它可以根据数据特征和训练情况自动调整网络结构,从
- 深度解析智能问答系统:如何打造精准、高效的AI对话架构?
和老莫一起学AI
人工智能架构自然语言处理产品经理语言模型学习ai
在人工智能的飞速发展中,智能问答系统(QA系统)逐渐成为了企业内部管理、客户服务、搜索引擎等多个领域中的关键技术。今天,我们将深入探讨一个基于大模型、自然语言处理、知识检索的智能问答系统的架构,详细介绍其技术原理、流程以及未来应用前景。一、系统整体概览在这个智能问答系统中,整个流程可以大致划分为两大部分:前端问答生成与后端离线数据处理。前端部分是用户交互的核心,通过用户的输入、关键词提取、检索和问
- PostgreSQL - pgvector 插件构建向量数据库并进行相似度查询
花千树-010
RAG数据库postgresqlAI编程
在现代的机器学习和人工智能应用中,向量相似度检索是一个非常重要的技术,尤其是在文本、图像或其他类型的嵌入向量的操作中。本文将介绍如何在PostgreSQL中安装pgvector插件,用于存储和检索向量数据,并展示如何通过Python脚本向数据库插入向量并执行相似度查询。一、安装PostgreSQL并配置pgvector插件1.安装PostgreSQL首先,确保你已经安装了PostgreSQL。可以
- 全面解析NVIDIA显卡:从入门级到旗舰级显卡详解
花千树-010
大模型人工智能算法智能电视
在选择显卡时,了解不同显卡的性能和适用场景是非常重要的。无论你是预算有限的入门用户,还是追求极致性能的游戏玩家,亦或是专业的内容创作者和深度学习研究人员,NVIDIA都有适合你的显卡。本篇博文将详细列举NVIDIA显卡的各项配置,从低到高逐一整理,并给出适用的使用场景。入门级显卡NVIDIAGeForceGT1030CUDA核心数:384基础频率:1227MHz加速频率:1468MHz显存:2GB
- AI行业高压与人才健康:纪念Felix Hill,并探讨AI代码生成工具的价值
前端
今天,我们怀着沉痛的心情悼念GoogleDeepMind研究科学家FelixHill,这位杰出的AI学者在41岁的年纪离开了我们。他的离世引发了我们对AI行业高压环境与人才健康问题的深刻反思。Felix生前曾公开表达AI行业前所未有的压力,这促使我们思考如何利用技术,例如AI代码生成器,来改善开发者的工作环境,提升效率,守护人才健康。FelixHill在自然语言处理和人工智能领域取得了令人瞩目的成
- 2024年AI浪潮:基础设施重构、模型演进与挑战并存
前端
2024年,人工智能领域呈现出蓬勃发展的景象,投资持续增长、基础设施发生变革,技术应用加速落地。各大科技公司和初创企业纷纷涌入,试图在这一充满机遇的领域分一杯羹。本文将深入探讨2024年AI发展的三大核心趋势:AI基础设施的重构、模型发展的新趋势以及AI发展带来的挑战,并重点关注企业如何从AI投资中获得回报,以及AI智能体技术的巨大潜力。选择合适的AI代码生成器将成为企业提升效率的关键。AI基础设
- 直播预告丨精度优于AlphaFold,基于深度学习实现生物大分子及其互作的三维结构预测
「MeetAI4S」系列直播第6期将于1月15日19:00准时开播,HyperAI超神经有幸邀请到了南开大学统计与数据科学学院教授郑伟,他本次分享的主题是「AlphaFold3王座未稳,来自学术界的反超:基于深度学习的生物大分子及其互作的三维结构预测」。蛋白质的功能取决于其独特的三维结构,近年来,基于深度学习等人工智能技术的蛋白质结构预测发展迅猛,AlphaFold甚至获得了2024年诺贝尔化学奖
- Gary Marcus 2025年AI预测:AGI仍在路上,务实发展才是王道
前端
人工智能领域发展日新月异,各种预测层出不穷。知名人工智能专家GaryMarcus近期发布了对2025年AI发展趋势的25项预测,其中最引人注目的是:AGI(通用人工智能)不会在2025年出现。这与一些过于乐观甚至盲目乐观的预测形成了鲜明对比。本文将深入解读Marcus的预测,探讨其背后的逻辑,并结合当前AI技术发展现状进行分析。Marcus的预测整体基调是谨慎乐观,他既肯定了AI在特定领域的进步,
- 数据驱动销售预测的未来:ScriptEcho赋能高效决策
前端
在瞬息万变的商业环境中,准确的销售预测是企业制定有效销售策略、实现业绩增长的基石。传统的销售预测方法往往依赖于人工分析和复杂的电子表格,效率低下,难以应对市场变化的快速冲击。然而,随着大数据的兴起和人工智能技术的飞速发展,数据驱动决策正成为现代企业提升竞争力的关键。本文将探讨销售预测面临的挑战与机遇,并重点介绍ScriptEcho如何通过AI赋能,提升销售预测的准确性和效率,助力企业实现数据驱动增
- 人类为何追求AGI?一个AI代码生成工具的思考
前端
近年来,“AI写代码工具”的出现,无疑为软件开发领域带来了革命性的变化。而我们今天要探讨的,是关于人类对通用人工智能(AGI)的追求,以及这与AI辅助开发工具之间微妙的联系。文章开头就抛出了一个尖锐的问题:人类为何如此痴迷于AGI,而非将更多精力放在改善人类生活本身?文章作者表达了对AGI发展方向的担忧。他认为,目前对AGI的追求,更多地体现在创造能够取代人类的超级智能上,例如“少数派报告式”的行
- AI代码生成工具的未来:杨立昆的洞见与AI革命
前端
近年来,人工智能(AI)领域取得了令人瞩目的进展,特别是以大型语言模型为代表的AI技术,在自然语言处理、图像生成等领域展现出强大的能力。然而,深度学习先驱杨立昆(YannLeCun)却对现有的AI系统提出了尖锐的批评,他认为目前的AI系统“理解能力远不如猫”,缺乏对真实世界的理解和常识。这引发了人们对AI未来发展方向的思考,也为我们探讨AI代码生成工具,以及AI技术对人类社会的影响提供了新的视角。
- 零售业的AI赋能与前端开发效率革命:ScriptEcho 的助力
前端
零售业正经历着前所未有的数字化转型,但同时也面临着巨大的挑战。库存管理混乱、个性化客户体验不足等问题,严重制约着零售企业的盈利能力。而人工智能(AI)的兴起,为解决这些问题提供了新的思路。通过AI驱动的实时库存管理和客户行为分析,零售企业可以显著提升运营效率和客户满意度。然而,构建这些AI赋能的零售应用,需要强大的前端开发能力,这正是AI代码生成器ScriptEcho能够发挥关键作用的地方。AI赋
- AI赋能:2024年,如何用AI提升效率,我的15个实用技巧及2025年展望
前端
2024年,人工智能技术突飞猛进,深刻地改变了我们的工作方式。作为一名科技领域的作者,我亲身体验了AI带来的效率提升。过去一年,我探索了各种AI工具,并将其应用于我的日常工作中,显著缩短了工作流程,节省了大量时间。本文将分享我在2024年使用AI提升生产力的15个实用技巧,并展望2025年AI可能带来的更多可能性。AI赋能下的高效创作:从代码到图像,全方位提升首先,AI极大地辅助了我的编程工作。对
- AI时代的前端开发:技能提升与职业发展之路
前端
在瞬息万变的科技时代,个人职业发展的重要性日益凸显。提升技能,不断学习,已经不再是锦上添花,而是立足之本,是我们在竞争激烈的职场中脱颖而出的关键。而人工智能(AI)技术的快速发展,为我们提供了前所未有的机遇,特别是对于前端开发领域,AI正以前所未有的速度改变着我们的工作方式和学习方式。AI赋能前端开发:个性化学习路径前端开发领域的技术栈庞大而复杂,涵盖HTML、CSS、JavaScript、各种框
- AI赋能:加速产品开发,提升公司竞争力
前端
在当今快节奏的商业环境中,产品开发效率直接关系到公司的生存和发展。然而,许多公司面临着产品开发周期长、成本高、市场响应速度慢等诸多挑战。这些挑战不仅延缓了产品上市时间,也增加了市场竞争的风险。因此,提高产品开发效率,成为企业提升核心竞争力的关键。而人工智能技术的应用,为我们提供了解决这些问题的有效途径。加速产品迭代,快速响应市场需求传统的软件开发流程往往冗长复杂,从需求分析、设计、编码到测试和上线
- 未来教育:AI知识库如何重塑学习体验
知识管理知识库知识库软件
在科技日新月异的今天,教育领域正经历着前所未有的变革。人工智能(AI)技术的快速发展,特别是AI知识库的广泛应用,正在重塑我们的学习体验,使之变得更加高效、个性化和智能化。本文将深入探讨AI知识库如何影响未来教育,以及它如何为学习者提供前所未有的学习体验。一、AI知识库:教育领域的智能助手AI知识库,作为结合了人工智能技术的知识管理系统,不仅能够存储和处理海量信息,还能通过自然语言处理、机器学习等
- AI赋能人力资源:效率提升新路径
前端
引言人工智能(AI)正以前所未有的速度改变着各行各业,从自动驾驶到医疗诊断,AI的应用日益广泛。而人力资源领域,作为企业运营的核心环节,也正经历着AI带来的深刻变革。传统的人力资源管理面临诸多挑战,例如招聘效率低、候选人筛选精准度不足、员工培训成本高昂以及数据分析能力有限等。这些问题不仅影响企业的招聘速度和效率,也制约了企业的发展。为了应对这些挑战,越来越多的企业开始探索AI技术在人力资源领域的应
- 【TVM 教程】内联及数学函数
ApacheTVM是一个端到端的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/作者:TianqiChen尽管TVM支持基本的算术运算,但很多时候,也需要复杂的内置函数,例如exp取指函数。这些函数是依赖target系统的,并且在不同target平台中可能具有不同的名称。本教程会学习到如何调用这些target-spe
- 2025 年 JeecgBoot AI 低代码平台白皮书
引言随着人工智能技术的快速发展和数字化转型的深入推进,企业对AI应用的需求日益旺盛。然而,传统AI开发模式存在技术门槛高、开发周期长、成本高昂等问题,难以满足企业快速迭代和敏捷开发的需求。JeecgBoot作为一款优秀的开源低代码开发平台,拥有庞大的用户群体和丰富的功能模块。为了顺应技术发展趋势,满足用户需求,JeecgBoot计划向AI低代码平台转型,打造一款集低代码开发和AI能力于一体的新一代
- AI大模型学习路线
liuhenghui5201
AIpythonAI大模型
阶段1Python编程基础主要内容掌握的核心能力·Python基础语法·Python数据处理·函数·文件读写·异常处理·模块和包1、掌握Python开发环境基本配置;2、掌握运算符、表达式、流程控制语句、数组等的使用;3、掌握字符串的基本操作;4、初步建立面向对象的编程思维;5、熟悉异常捕获的基本流程及使用方式;6、掌握类和对象的基本使用方式。可解决的现实问题:熟练掌握人工智能Python语言,建
- 2024 年技术盘点与展望:从 AI 辅助到个人成长的多元探索
109702008
杂谈人工智能
一、引言2024年,技术领域的发展日新月异,我在这片汹涌的浪潮中不断探索与成长。这一年,我不仅见证了人工智能技术的飞速发展,还通过AI辅助创作、AI赋能编程以及参与各类竞赛与课程,实现了个人技术的显著提升与视野的拓展。本文将从总结盘点的角度,回顾我在技术领域的成长历程,并对未来进行展望。二、AI辅助创作:提升写作效率与质量在自然语言处理技术(NLP)的推动下,AI写作工具成为了我的得力助手。这些工
- 基于YOLOv5、YOLOv8和YOLOv10的自助售货机商品检测:深度学习实践与应用
2025年数学建模美赛
YOLO深度学习人工智能目标跟踪目标检测
引言自助售货机已经成为现代零售和自动化销售领域的重要组成部分。在自助售货机中,商品的检测与管理至关重要。通过精准的商品检测技术,售货机可以在商品售出后自动更新库存,并提供准确的商品信息反馈。然而,在复杂的环境下进行商品检测是一个具有挑战性的问题,尤其是在商品种类繁多、摆放方式多样以及光照条件变化较大的情况下。近年来,基于深度学习的目标检测算法,特别是YOLO(YouOnlyLookOnce)系列模
- 【分类】【损失函数】处理类别不平衡:CEFL 和 CEFL2 损失函数的实现与应用
丶2136
AI分类人工智能损失函数
引言在深度学习中的分类问题中,类别不平衡问题是常见的挑战之一。尤其在面部表情分类任务中,不同表情类别的样本数量可能差异较大,比如“开心”表情的样本远远多于“生气”表情。面对这种情况,普通的交叉熵损失函数容易导致模型过拟合到大类样本,忽略少数类样本。为了有效解决类别不平衡问题,Class-balancedExponentialFocalLoss(CEFL)和Class-balancedExponen
- 交叉熵损失函数(Cross-Entropy Loss)
我叫罗泽南
深度学习人工智能
原理交叉熵损失函数是深度学习中分类问题常用的损失函数,特别适用于多分类问题。它通过度量预测分布与真实分布之间的差异,来衡量模型输出的准确性。交叉熵的数学公式交叉熵的定义如下:CrossEntroyLoss=−∑i=1Nyi⋅log(y^i)\begin{equation}CrossEntroyLoss=-\sum_{i=1}^{N}y_i\cdotlog(\hat{y}_i)\end{equati
- 什么是多模态机器学习:跨感知融合的智能前沿
非凡暖阳
人工智能神经网络
在人工智能的广阔天地里,多模态机器学习(MultimodalMachineLearning)作为一项前沿技术,正逐步解锁人机交互和信息理解的新境界。它超越了单一感官输入的限制,通过整合视觉、听觉、文本等多种数据类型,构建了一个更加丰富、立体的认知模型,为机器赋予了接近人类的综合感知与理解能力。本文将深入探讨多模态机器学习的定义、核心原理、关键技术、面临的挑战以及未来的应用前景,旨在为读者勾勒出这一
- 谷歌吹响反击号角:2025年Gemini用户目标5亿,AI大战一触即发!
that's boy
人工智能chatgptopenaiAI工具AI编程googlegemini
人工智能领域的竞争日趋白热化,谷歌CEO桑达·皮采亲自下场,为GeminiAI定下了雄心勃勃的目标:到2025年底,用户突破5亿!面对ChatGPT的强势崛起,谷歌能否成功逆袭?本文将深入剖析谷歌的战略布局、Gemini的技术优势以及未来AI竞争的格局。谷歌的反击:5亿用户的雄心壮志在过去几年,OpenAI凭借ChatGPT的强大实力,几乎垄断了AI领域的聚光灯。谷歌虽然在AI技术研究方面一直处于
- SQL的各种连接查询
xieke90
UNION ALLUNION外连接内连接JOIN
一、内连接
概念:内连接就是使用比较运算符根据每个表共有的列的值匹配两个表中的行。
内连接(join 或者inner join )
SQL语法:
select * fron
- java编程思想--复用类
百合不是茶
java继承代理组合final类
复用类看着标题都不知道是什么,再加上java编程思想翻译的比价难懂,所以知道现在才看这本软件界的奇书
一:组合语法:就是将对象的引用放到新类中即可
代码:
package com.wj.reuse;
/**
*
* @author Administrator 组
- [开源与生态系统]国产CPU的生态系统
comsci
cpu
计算机要从娃娃抓起...而孩子最喜欢玩游戏....
要让国产CPU在国内市场形成自己的生态系统和产业链,国家和企业就不能够忘记游戏这个非常关键的环节....
投入一些资金和资源,人力和政策,让游
- JVM内存区域划分Eden Space、Survivor Space、Tenured Gen,Perm Gen解释
商人shang
jvm内存
jvm区域总体分两类,heap区和非heap区。heap区又分:Eden Space(伊甸园)、Survivor Space(幸存者区)、Tenured Gen(老年代-养老区)。 非heap区又分:Code Cache(代码缓存区)、Perm Gen(永久代)、Jvm Stack(java虚拟机栈)、Local Method Statck(本地方法栈)。
HotSpot虚拟机GC算法采用分代收
- 页面上调用 QQ
oloz
qq
<A href="tencent://message/?uin=707321921&Site=有事Q我&Menu=yes">
<img style="border:0px;" src=http://wpa.qq.com/pa?p=1:707321921:1></a>
- 一些问题
文强chu
问题
1.eclipse 导出 doc 出现“The Javadoc command does not exist.” javadoc command 选择 jdk/bin/javadoc.exe 2.tomcate 配置 web 项目 .....
SQL:3.mysql * 必须得放前面 否则 select&nbs
- 生活没有安全感
小桔子
生活孤独安全感
圈子好小,身边朋友没几个,交心的更是少之又少。在深圳,除了男朋友,没几个亲密的人。不知不觉男朋友成了唯一的依靠,毫不夸张的说,业余生活的全部。现在感情好,也很幸福的。但是说不准难免人心会变嘛,不发生什么大家都乐融融,发生什么很难处理。我想说如果不幸被分手(无论原因如何),生活难免变化很大,在深圳,我没交心的朋友。明
- php 基础语法
aichenglong
php 基本语法
1 .1 php变量必须以$开头
<?php
$a=” b”;
echo
?>
1 .2 php基本数据库类型 Integer float/double Boolean string
1 .3 复合数据类型 数组array和对象 object
1 .4 特殊数据类型 null 资源类型(resource) $co
- mybatis tools 配置详解
AILIKES
mybatis
MyBatis Generator中文文档
MyBatis Generator中文文档地址:
http://generator.sturgeon.mopaas.com/
该中文文档由于尽可能和原文内容一致,所以有些地方如果不熟悉,看中文版的文档的也会有一定的障碍,所以本章根据该中文文档以及实际应用,使用通俗的语言来讲解详细的配置。
本文使用Markdown进行编辑,但是博客显示效
- 继承与多态的探讨
百合不是茶
JAVA面向对象 继承 对象
继承 extends 多态
继承是面向对象最经常使用的特征之一:继承语法是通过继承发、基类的域和方法 //继承就是从现有的类中生成一个新的类,这个新类拥有现有类的所有extends是使用继承的关键字:
在A类中定义属性和方法;
class A{
//定义属性
int age;
//定义方法
public void go
- JS的undefined与null的实例
bijian1013
JavaScriptJavaScript
<form name="theform" id="theform">
</form>
<script language="javascript">
var a
alert(typeof(b)); //这里提示undefined
if(theform.datas
- TDD实践(一)
bijian1013
java敏捷TDD
一.TDD概述
TDD:测试驱动开发,它的基本思想就是在开发功能代码之前,先编写测试代码。也就是说在明确要开发某个功能后,首先思考如何对这个功能进行测试,并完成测试代码的编写,然后编写相关的代码满足这些测试用例。然后循环进行添加其他功能,直到完全部功能的开发。
- [Maven学习笔记十]Maven Profile与资源文件过滤器
bit1129
maven
什么是Maven Profile
Maven Profile的含义是针对编译打包环境和编译打包目的配置定制,可以在不同的环境上选择相应的配置,例如DB信息,可以根据是为开发环境编译打包,还是为生产环境编译打包,动态的选择正确的DB配置信息
Profile的激活机制
1.Profile可以手工激活,比如在Intellij Idea的Maven Project视图中可以选择一个P
- 【Hive八】Hive用户自定义生成表函数(UDTF)
bit1129
hive
1. 什么是UDTF
UDTF,是User Defined Table-Generating Functions,一眼看上去,貌似是用户自定义生成表函数,这个生成表不应该理解为生成了一个HQL Table, 貌似更应该理解为生成了类似关系表的二维行数据集
2. 如何实现UDTF
继承org.apache.hadoop.hive.ql.udf.generic
- tfs restful api 加auth 2.0认计
ronin47
目前思考如何给tfs的ngx-tfs api增加安全性。有如下两点:
一是基于客户端的ip设置。这个比较容易实现。
二是基于OAuth2.0认证,这个需要lua,实现起来相对于一来说,有些难度。
现在重点介绍第二种方法实现思路。
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGe
- jdk环境变量配置
byalias
javajdk
进行java开发,首先要安装jdk,安装了jdk后还要进行环境变量配置:
1、下载jdk(http://java.sun.com/javase/downloads/index.jsp),我下载的版本是:jdk-7u79-windows-x64.exe
2、安装jdk-7u79-windows-x64.exe
3、配置环境变量:右击"计算机"-->&quo
- 《代码大全》表驱动法-Table Driven Approach-2
bylijinnan
java
package com.ljn.base;
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Collections;
import java.uti
- SQL 数值四舍五入 小数点后保留2位
chicony
四舍五入
1.round() 函数是四舍五入用,第一个参数是我们要被操作的数据,第二个参数是设置我们四舍五入之后小数点后显示几位。
2.numeric 函数的2个参数,第一个表示数据长度,第二个参数表示小数点后位数。
例如:
select cast(round(12.5,2) as numeric(5,2))  
- c++运算符重载
CrazyMizzz
C++
一、加+,减-,乘*,除/ 的运算符重载
Rational operator*(const Rational &x) const{
return Rational(x.a * this->a);
}
在这里只写乘法的,加减除的写法类似
二、<<输出,>>输入的运算符重载
&nb
- hive DDL语法汇总
daizj
hive修改列DDL修改表
hive DDL语法汇总
1、对表重命名
hive> ALTER TABLE table_name RENAME TO new_table_name;
2、修改表备注
hive> ALTER TABLE table_name SET TBLPROPERTIES ('comment' = new_comm
- jbox使用说明
dcj3sjt126com
Web
参考网址:http://www.kudystudio.com/jbox/jbox-demo.html jBox v2.3 beta [
点击下载]
技术交流QQGroup:172543951 100521167
[2011-11-11] jBox v2.3 正式版
- [调整&修复] IE6下有iframe或页面有active、applet控件
- UISegmentedControl 开发笔记
dcj3sjt126com
// typedef NS_ENUM(NSInteger, UISegmentedControlStyle) {
// UISegmentedControlStylePlain, // large plain
&
- Slick生成表映射文件
ekian
scala
Scala添加SLICK进行数据库操作,需在sbt文件上添加slick-codegen包
"com.typesafe.slick" %% "slick-codegen" % slickVersion
因为我是连接SQL Server数据库,还需添加slick-extensions,jtds包
"com.typesa
- ES-TEST
gengzg
test
package com.MarkNum;
import java.io.IOException;
import java.util.Date;
import java.util.HashMap;
import java.util.Map;
import javax.servlet.ServletException;
import javax.servlet.annotation
- 为何外键不再推荐使用
hugh.wang
mysqlDB
表的关联,是一种逻辑关系,并不需要进行物理上的“硬关联”,而且你所期望的关联,其实只是其数据上存在一定的联系而已,而这种联系实际上是在设计之初就定义好的固有逻辑。
在业务代码中实现的时候,只要按照设计之初的这种固有关联逻辑来处理数据即可,并不需要在数据库层面进行“硬关联”,因为在数据库层面通过使用外键的方式进行“硬关联”,会带来很多额外的资源消耗来进行一致性和完整性校验,即使很多时候我们并不
- 领域驱动设计
julyflame
VODAO设计模式DTOpo
概念:
VO(View Object):视图对象,用于展示层,它的作用是把某个指定页面(或组件)的所有数据封装起来。
DTO(Data Transfer Object):数据传输对象,这个概念来源于J2EE的设计模式,原来的目的是为了EJB的分布式应用提供粗粒度的数据实体,以减少分布式调用的次数,从而提高分布式调用的性能和降低网络负载,但在这里,我泛指用于展示层与服务层之间的数据传输对
- 单例设计模式
hm4123660
javaSingleton单例设计模式懒汉式饿汉式
单例模式是一种常用的软件设计模式。在它的核心结构中只包含一个被称为单例类的特殊类。通过单例模式可以保证系统中一个类只有一个实例而且该实例易于外界访问,从而方便对实例个数的控制并节约系统源。如果希望在系统中某个类的对象只能存在一个,单例模式是最好的解决方案。
&nb
- logback
zhb8015
loglogback
一、logback的介绍
Logback是由log4j创始人设计的又一个开源日志组件。logback当前分成三个模块:logback-core,logback- classic和logback-access。logback-core是其它两个模块的基础模块。logback-classic是log4j的一个 改良版本。此外logback-class
- 整合Kafka到Spark Streaming——代码示例和挑战
Stark_Summer
sparkstormzookeeperPARALLELISMprocessing
作者Michael G. Noll是瑞士的一位工程师和研究员,效力于Verisign,是Verisign实验室的大规模数据分析基础设施(基础Hadoop)的技术主管。本文,Michael详细的演示了如何将Kafka整合到Spark Streaming中。 期间, Michael还提到了将Kafka整合到 Spark Streaming中的一些现状,非常值得阅读,虽然有一些信息在Spark 1.2版
- spring-master-slave-commondao
王新春
DAOspringdataSourceslavemaster
互联网的web项目,都有个特点:请求的并发量高,其中请求最耗时的db操作,又是系统优化的重中之重。
为此,往往搭建 db的 一主多从库的 数据库架构。作为web的DAO层,要保证针对主库进行写操作,对多个从库进行读操作。当然在一些请求中,为了避免主从复制的延迟导致的数据不一致性,部分的读操作也要到主库上。(这种需求一般通过业务垂直分开,比如下单业务的代码所部署的机器,读去应该也要从主库读取数