上一篇《win10系统下Yolov5目标检测环境搭建(Anaconda3+Pytorch+Yolov5,CPU,无GPU)》中,介绍了win10系统下yolov5的环境搭建步骤,本篇在此环境下,实现吸烟行为识别检测。
存放labelimg标注工具生成的.xml标注文件,每一张图片对应一个xml文件
存放train.txt,val.txt,test.txt和trainval.txt文件
存放待训练的图片文件,我使用的所有图片都为jpg格式
新建split_train_val.py文件,其作用主要是生成train.txt,val.txt,test.txt和trainval.txt文件,生成的这些文件,存放在ImageSets/Main文件夹下。py脚本内容如下:
# coding:utf-8
import os
import random
import argparse
parser = argparse.ArgumentParser()
#xml文件的地址,根据自己的数据进行修改 xml一般存放在Annotations下
parser.add_argument('--xml_path', default='smoke_data/Annotations', type=str, help='input xml label path')
#数据集的划分,地址选择自己数据下的ImageSets/Main
parser.add_argument('--txt_path', default='smoke_data/ImageSets/Main', type=str, help='output txt label path')
opt = parser.parse_args()
trainval_percent = 0.9
train_percent = 0.9
xmlfilepath = opt.xml_path
txtsavepath = opt.txt_path
total_xml = os.listdir(xmlfilepath)
if not os.path.exists(txtsavepath):
os.makedirs(txtsavepath)
num = len(total_xml)
list_index = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list_index, tv)
train = random.sample(trainval, tr)
file_trainval = open(txtsavepath + '/trainval.txt', 'w')
file_test = open(txtsavepath + '/test.txt', 'w')
file_train = open(txtsavepath + '/train.txt', 'w')
file_val = open(txtsavepath + '/val.txt', 'w')
for i in list_index:
name = total_xml[i][:-4] + '\n'
if i in trainval:
file_trainval.write(name)
if i in train:
file_train.write(name)
else:
file_val.write(name)
else:
file_test.write(name)
file_trainval.close()
file_train.close()
file_val.close()
file_test.close()
执行命令,如下:
python split_train_val.py
进入之前建立的pytorch环境,安装labelimg,命令如下:
pip install labelimg
输入labelimg命令,启动,如下:
选择使用“PascalVOC”格式;
点击“open dir”按钮,选择JPEGImages文件夹目录;
点击“change save dir”按钮,选择Annotations文件夹目录;
点击“create RectBox”按钮,选择区域进行标注;
标注完成后,点击“save”按钮,进行保存,xml会存放在Annotations文件夹下。
即将xml文件转化成txt文件,每一张图片对应一个txt文件,文件中每一行对应一个目标信息,包括class, x_center, y_center, width和height。
新建voc_label.py脚本,将classes 里面的内容改成自己的类别,若是多个类别,则用逗号分隔,内容如下:
# -*- coding: utf-8 -*-
import xml.etree.ElementTree as ET
import os
from os import getcwd
sets = ['train', 'val', 'test']
classes = [
"smoke"] # 改成自己的类别
abs_path = os.getcwd()
print(abs_path)
def convert(size, box):
dw = 1. / (size[0])
dh = 1. / (size[1])
x = (box[0] + box[1]) / 2.0 - 1
y = (box[2] + box[3]) / 2.0 - 1
w = box[1] - box[0]
h = box[3] - box[2]
x = x * dw
w = w * dw
y = y * dh
h = h * dh
return x, y, w, h
def convert_annotation(image_id):
in_file = open('F:/SVN-ZJKY/YiFeiShouJiRobot/yolov5-master/smoke_data/Annotations/%s.xml' % (image_id), encoding='UTF-8')
out_file = open('F:/SVN-ZJKY/YiFeiShouJiRobot/yolov5-master/smoke_data/labels/%s.txt' % (image_id), 'w')
tree = ET.parse(in_file)
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
for obj in root.iter('object'):
difficult = obj.find('difficult').text
# difficult = obj.find('Difficult').text
cls = obj.find('name').text
if cls not in classes or int(difficult) == 1:
continue
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
float(xmlbox.find('ymax').text))
b1, b2, b3, b4 = b
# 标注越界修正
if b2 > w:
b2 = w
if b4 > h:
b4 = h
b = (b1, b2, b3, b4)
bb = convert((w, h), b)
out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
wd = getcwd()
for image_set in sets:
if not os.path.exists('F:/SVN-ZJKY/YiFeiShouJiRobot/yolov5-master/smoke_data/labels/'):
os.makedirs('F:/SVN-ZJKY/YiFeiShouJiRobot/yolov5-master/smoke_data/labels/')
image_ids = open('F:/SVN-ZJKY/YiFeiShouJiRobot/yolov5-master/smoke_data/ImageSets/Main/%s.txt' % (image_set)).read().strip().split()
list_file = open('smoke_data/%s.txt' % (image_set), 'w')
for image_id in image_ids:
list_file.write(abs_path + '/smoke_data/images/%s.jpg\n' % (image_id))
convert_annotation(image_id)
list_file.close()
执行命令,如下:
python voc_label.py
运行该脚本,会生成labels文件夹和三个包含数据集的txt文件,即该脚本的作用:将训练集、验证集、测试集生成label标签(训练中要用到),同时将数据集路径导入txt文件中。如下:
其中,labels文件夹,存放xml文件转化后的txt文件;
train.txt文件,记录的是训练集图像绝对路径;
test.txt文件,记录的是测试集图像绝对路径;
val.txt文件,记录的是验证集图像绝对路径;
在yolov5-master/data/文件夹下,新建smoke_data.yaml文件,内容如下:
train: F:/SVN-ZJKY/YiFeiShouJiRobot/yolov5-master/smoke_data/train.txt
val: F:/SVN-ZJKY/YiFeiShouJiRobot/yolov5-master/smoke_data/val.txt
test: F:/SVN-ZJKY/YiFeiShouJiRobot/yolov5-master/smoke_data/test.txt
# Classes
nc: 1 # number of classes
names: ['smoke'] # class names
注意:修改自己对应的类别个数和类别名。
我选择使用的是yolov5s模型,进入yolov5-master/model/文件夹下,找到yolov5s.yaml文件,修改对应的类别个数nc,如下:
# YOLOv5 by Ultralytics, GPL-3.0 license
# Parameters
#nc: 80 # number of classes
nc: 1
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.50 # layer channel multiple
anchors:
- [10,13, 16,30, 33,23] # P3/8
- [30,61, 62,45, 59,119] # P4/16
- [116,90, 156,198, 373,326] # P5/32
# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 3, C3, [1024]],
[-1, 1, SPPF, [1024, 5]], # 9
]
# YOLOv5 v6.0 head
head:
[[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 13
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 14], 1, Concat, [1]], # cat head P4
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 10], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]
修改train.py,主要修改内容,如下:
def parse_opt(known=False):
parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='initial weights path')
parser.add_argument('--cfg', type=str, default='models/yolov5s.yaml', help='model.yaml path')
parser.add_argument('--data', type=str, default=ROOT / 'data/smoke_data.yaml', help='dataset.yaml path')
parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch.yaml', help='hyperparameters path')
parser.add_argument('--epochs', type=int, default=50)
parser.add_argument('--batch-size', type=int, default=10, help='total batch size for all GPUs')
各参数详情如下:
其中,–epochs表示训练次数(如果显卡好可以调大一点,默认为300), 而–batch-size 是表示一次处理完多少张图片才进行权重更新,显卡不好时可以调小。
执行如下命令,开始训练:
python train.py
训练完成后,结果保存在runs/train/exp13目录下,如下:
其中,训练好的权重文件在weights文件夹下:
best.pt文件,表示训练过程中得到的效果最佳的模型;
last.pt文件,表示训练结束后最终得到的模型;
修改detect.py文件,主要修改内容,如下:
def parse_opt():
parser = argparse.ArgumentParser()
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'runs/train/exp13/weights/best.pt', help='model path(s)')
#parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model path(s)')
#默认 图片
parser.add_argument('--source', type=str, default=ROOT / 'data/smokeImages', help='file/dir/URL/glob, 0 for webcam')
#摄像头
#parser.add_argument('--source', type=str, default=0, help='file/dir/URL/glob, 0 for webcam')
在py文件中,可以看到,我们将待测试的图片存放在data/smokeImages文件夹下,修改完成后执行如下命令:
python detect.py