图神经网络中的Graph Pooling

点击上方,选择星标置顶,每天给你送干货

阅读大概需要4分钟

跟随小博主,每天进步一丢丢

来自 | CSDN博客   作者 | 木盏

https://blog.csdn.net/leviopku/article/details/106949616

编辑 | 深度学习这件小事公众号

本文仅作学术交流,如有侵权,请联系后台删除。

   前言

GNN/GCN在非欧数据中的应用具有极大的挖掘价值。通常,GNN的应用分为两种:1,节点分类;2,图分类。

节点分类可以用在点云分割,社交网络节点分类,推荐算法等等。

图分类可以用在姿态估计,蛋白质分类等等,当然,也可以用在图像分类。

对于节点分类而言,图结构在forward阶段是不会改变的,改变的只是节点的隐藏层属性。如下:

图神经网络中的Graph Pooling_第1张图片

对于图分类而言,图结构在前传的时候会downsize,最后聚合成一个点的feature再做MLP:

图神经网络中的Graph Pooling_第2张图片

截图来自论文:https://arxiv.org/abs/1901.00596

图分类所用的downsize便是本文的主角graph pooling。--终于引出来了..

   Graph Pooling

GNN/GCN 最先火的应用是在Node classification,然后先富带动后富,Graph classification也越来越多人研究。所以,Graph Pooling的研究其实是起步比较晚的。

Pooling就是池化操作,熟悉CNN的朋友都知道Pooling只是对特征图的downsampling。不熟悉CNN的朋友请按ctrl+w。对图像的Pooling非常简单,只需给定步长和池化类型就能做。但是Graph pooling,会受限于非欧的数据结构,而不能简单地操作。

简而言之,graph pooling就是要对graph进行合理化的downsize。

目前有三大类方法进行graph pooling:

1. Hard rule

hard rule很简单,因为Graph structure是已知的,可以预先规定池化节点:

图神经网络中的Graph Pooling_第3张图片

如图,咱们预先规定[1,2,3,5]节点,[6,7]节点和[4]节点合并,得到新的a,b,c节点。这便是硬规定下的池化方法。比较好理解。

2. Graph coarsening

图粗略化是现在的主流可学习池化方法之一。

代表论文:DiffPool

论文链接:https://arxiv.org/abs/1806.08804

图神经网络中的Graph Pooling_第4张图片

这种方法是hard rule的trainable版本,先对节点进行聚类,然后合成一个超级节点,以达到池化效果。

思想流程大概是:soft clustering -> super node -> coarsening

3. Node selection

节点选择就是选择一些重要节点去代替原图:

代表论文:self-attention graph pooling

论文链接:https://arxiv.org/pdf/1904.08082.pdf

图神经网络中的Graph Pooling_第5张图片

这个self-attention类似于分析节点的重要性,方法类似节点分类的操作。



下载一:中文版!学习TensorFlow、PyTorch、机器学习、深度学习和数据结构五件套!

后台回复【五件套】
下载二:南大模式识别PPT

后台回复【南大模式识别】




说个正事哈

由于微信平台算法改版,公号内容将不再以时间排序展示,如果大家想第一时间看到我们的推送,强烈建议星标我们和给我们多点点【在看】。星标具体步骤为:(1)点击页面最上方“深度学习自然语言处理”,进入公众号主页。(2)点击右上角的小点点,在弹出页面点击“设为星标”,就可以啦。
感谢支持,比心。投稿或交流学习,备注:昵称-学校(公司)-方向,进入DL&NLP交流群。
方向有很多:机器学习、深度学习,python,情感分析、意见挖掘、句法分析、机器翻译、人机对话、知识图谱、语音识别等。记得备注呦

推荐两个专辑给大家:专辑 | 李宏毅人类语言处理2020笔记专辑 | NLP论文解读专辑 | 情感分析

整理不易,还望给个在看!

你可能感兴趣的:(算法,人工智能,机器学习,编程语言,微软)