NNDL 实验七 循环神经网络(1)RNN记忆能力实验

目录

6.1 循环神经网络的记忆能力实验

6.1.1 数据集构建

6.1.1.1 数据集的构建函数

6.1.1.2 加载数据并进行数据划分

6.1.1.3 构造Dataset类 

6.1.2 模型构建

6.1.2.1 嵌入层

6.1.2.2 SRN层

6.1.2.3 线性层

6.1.2.4 模型汇总

6.1.3 模型训练

6.1.3.1 训练指定长度的数字预测模型

6.1.3.2 多组训练

6.1.3.3 损失曲线展示

6.1.4 模型评价

总结


循环神经网络(Recurrent Neural Network,RNN)是一类具有短期记忆能力的神经网络.

在循环神经网络中,神经元不但可以接受其他神经元的信息,也可以接受自身的信息,形成具有环路的网络结构.和前馈神经网络相比,循环神经网络更加符合生物神经网络的结构.目前,循环神经网络已经被广泛应用在语音识别、语言模型以及自然语言生成等任务上.简单循环网络在参数学习时存在长程依赖问题,很难建模长时间间隔(Long Range)的状态之间的依赖关系。NNDL 实验七 循环神经网络(1)RNN记忆能力实验_第1张图片

 为了测试简单循环网络的记忆能力,本节构建一个【数字求和任务】进行实验。数字求和任务的输入是一串数字,前两个位置的数字为0-9,其余数字随机生成(主要为0),预测目标是输入序列中前两个数字的加和。图6.3展示了长度为10的数字序列.

6.1 循环神经网络的记忆能力实验

循环神经网络的一种简单实现是简单循环网络(Simple Recurrent Network,SRN)NNDL 实验七 循环神经网络(1)RNN记忆能力实验_第2张图片

 简单循环网络在参数学习时存在长程依赖问题,很难建模长时间间隔(Long Range)的状态之间的依赖关系。为了测试简单循环网络的记忆能力,本节构建一个数字求和任务进行实验。

数字求和任务的输入是一串数字,前两个位置的数字为0-9,其余数字随机生成(主要为0),预测目标是输入序列中前两个数字的加和。图6.3展示了长度为10的数字序列.NNDL 实验七 循环神经网络(1)RNN记忆能力实验_第3张图片

如果序列长度越长,准确率越高,则说明网络的记忆能力越好.因此,我们可以构建不同长度的数据集,通过验证简单循环网络在不同长度的数据集上的表现,从而测试简单循环网络的长程依赖能力. 

6.1.1 数据集构建

构建不同长度的数字预测数据集DigitSum

6.1.1.1 数据集的构建函数

由于在本任务中,输入序列的前两位数字为 0 − 9,其组合数是固定的,所以可以穷举所有的前两位数字组合,并在后面默认用0填充到固定长度. 但考虑到数据的多样性,这里对生成的数字序列中的零位置进行随机采样,并将其随机替换成0-9的数字以增加样本的数量.

我们可以通过设置kk的数值来指定一条样本随机生成的数字序列数量.当生成某个指定长度的数据集时,会同时生成训练集、验证集和测试集。当k=3时,生成训练集。当kk=1时,生成验证集和测试集.

import os
import torch
import random
import numpy as np
import torch.nn as nn
 
# 固定随机种子
random.seed(0)
np.random.seed(0)
 
def generate_data(length, k, save_path):
    if length < 3:
        raise ValueError("The length of data should be greater than 2.")
    if k == 0:
        raise ValueError("k should be greater than 0.")
    # 生成100条长度为length的数字序列,除前两个字符外,序列其余数字暂用0填充
    base_examples = []
    for n1 in range(0, 10):
        for n2 in range(0, 10):
            seq = [n1, n2] + [0] * (length - 2)
            label = n1 + n2
            base_examples.append((seq, label))
 
    examples = []
    # 数据增强:对base_examples中的每条数据,默认生成k条数据,放入examples
    for base_example in base_examples:
        for _ in range(k):
            # 随机生成替换的元素位置和元素
            idx = np.random.randint(2, length)
            val = np.random.randint(0, 10)
            # 对序列中的对应零元素进行替换
            seq = base_example[0].copy()
            label = base_example[1]
            seq[idx] = val
            examples.append((seq, label))
 
    # 保存增强后的数据
    with open(save_path, "w", encoding="utf-8") as f:
        for example in examples:
            # 将数据转为字符串类型,方便保存
            seq = [str(e) for e in example[0]]
            label = str(example[1])
            line = " ".join(seq) + "\t" + label + "\n"
            f.write(line)
 
    print(f"generate data to: {save_path}.")
 
# 定义生成的数字序列长度
lengths = [5, 10, 15, 20, 25, 30, 35]
for length in lengths:
    # 首先判断是否存在这样的数据文件,不存在就建立一个
    if not os.path.exists(f"./datasets/{length}/"):
        os.makedirs(f"./datasets/{length}")
 
    # 生成长度为length的训练数据
    save_path = f"./datasets/{length}/train.txt"
    k = 3
    generate_data(length, k, save_path)
    # 生成长度为length的验证数据
    save_path = f"./datasets/{length}/dev.txt"
    k = 1
    generate_data(length, k, save_path)
    # 生成长度为length的测试数据
    save_path = f"./datasets/{length}/test.txt"
    k = 1
    generate_data(length, k, save_path)

6.1.1.2 加载数据并进行数据划分

 为方便使用,本实验提前生成了长度分别为5、10、 15、20、25、30和35的7份数据

# 加载数据
def load_data(data_path):
    # 加载训练集
    train_examples = []
    train_path = os.path.join(data_path, "train.txt")
    with open(train_path, "r", encoding="utf-8") as f:
        for line in f.readlines():
            # 解析一行数据,将其处理为数字序列seq和标签label
            items = line.strip().split("\t")
            seq = [int(i) for i in items[0].split(" ")]
            label = int(items[1])
            train_examples.append((seq, label))
 
    # 加载验证集
    dev_examples = []
    dev_path = os.path.join(data_path, "dev.txt")
    with open(dev_path, "r", encoding="utf-8") as f:
        for line in f.readlines():
            # 解析一行数据,将其处理为数字序列seq和标签label
            items = line.strip().split("\t")
            seq = [int(i) for i in items[0].split(" ")]
            label = int(items[1])
            dev_examples.append((seq, label))
 
    # 加载测试集
    test_examples = []
    test_path = os.path.join(data_path, "test.txt")
    with open(test_path, "r", encoding="utf-8") as f:
        for line in f.readlines():
            # 解析一行数据,将其处理为数字序列seq和标签label
            items = line.strip().split("\t")
            seq = [int(i) for i in items[0].split(" ")]
            label = int(items[1])
            test_examples.append((seq, label))
 
    return train_examples, dev_examples, test_examples
 
# 设定加载的数据集的长度
length = 5
# 该长度的数据集的存放目录
data_path = f"./datasets/{length}"
# 加载该数据集
train_examples, dev_examples, test_examples = load_data(data_path)
print("dev example:", dev_examples[:2])
print("训练集数量:", len(train_examples))
print("验证集数量:", len(dev_examples))
print("测试集数量:", len(test_examples))

NNDL 实验七 循环神经网络(1)RNN记忆能力实验_第4张图片  

6.1.1.3 构造Dataset类 

 为了方便使用梯度下降法进行优化,我们构造了DigitSum数据集的Dataset类,函数__getitem__负责根据索引读取数据,并将数据转换为张量

class DigitSumDataset(Dataset):
    def __init__(self, data):
        self.data = data
 
    def __getitem__(self, idx):
        example = self.data[idx]
        seq = torch.tensor(example[0], dtype=torch.int64)
        label = torch.tensor(example[1], dtype=torch.int64)
        return seq, label
 
    def __len__(self):
        return len(self.data)

6.1.2 模型构建

使用SRN模型进行数字加和任务的模型结构如下图所示NNDL 实验七 循环神经网络(1)RNN记忆能力实验_第5张图片

 整个模型由以下几个部分组成:
(1) 嵌入层:将输入的数字序列进行向量化,即将每个数字映射为向量;
(2) SRN 层:接收向量序列,更新循环单元,将最后时刻的隐状态作为整个序列的表示;
(3) 输出层:一个线性层,输出分类的结果.

6.1.2.1 嵌入层

本任务输入的样本是数字序列,为了更好地表示数字,需要将数字映射为一个嵌入向量。嵌入向量中的每个维度均能用来刻画该数字本身的某种特性。由于向量能够表达该数字更多的信息,利用向量进行数字求和任务,可以使得模型具有更强的拟合能力。

首先,我们构建一个嵌入矩阵E\in\mathbb{R}^{^{10*M}},其中第ii行对应数字i的嵌入向量,每个嵌入向量的维度是M。给定一个组数字序列S\in\mathbb{R}^{^{B*L}},其中B为批大小,L为序列长度,可以通过查表将其映射为嵌入表示X\in\mathbb{R}^{^{B*L*M}}

NNDL 实验七 循环神经网络(1)RNN记忆能力实验_第6张图片 

class Embedding(nn.Module):
    def __init__(self, num_embeddings, embedding_dim):
        super(Embedding, self).__init__()
        # 定义嵌入矩阵
        self.W = torch.nn.Parameter(torch.Tensor(num_embeddings, embedding_dim))
 
    def forward(self, inputs):
        # 根据索引获取对应词向量
        embs = self.W[inputs]
        return embs
 
emb_layer = Embedding(10, 5)
inputs = torch.tensor([0, 1, 2, 3])
emb_layer(inputs)
print(emb_layer(inputs))

6.1.2.2 SRN层

自定义简单循环网络,将自己实现的SRN和Paddle框架内置的SRN返回的结果进行打印展示,将自己实现的SRN与Paddle内置的SRN在输出值的精度上进行对比

在进行实验时,首先定义输入数据inputs,然后将该数据分别传入Paddle内置的SRN与自己实现的SRN模型中,最后通过对比两者的隐状态输出向量。

import torch.nn.functional as F

torch.manual_seed(0)


# SRN模型
class SRN(nn.Module):
    def __init__(self, input_size, hidden_size, W_attr=None, U_attr=None, b_attr=None):
        super(SRN, self).__init__()
        # 嵌入向量的维度
        self.input_size = input_size
        # 隐状态的维度
        self.hidden_size = hidden_size
        W_attr = torch.randn([input_size, hidden_size])
        W_attr = torch.nn.init.xavier_uniform_(torch.as_tensor(W_attr, dtype=torch.float32), gain=1.0)
        U_attr = torch.randn([hidden_size, hidden_size])
        U_attr = torch.nn.init.xavier_uniform_(torch.as_tensor(U_attr, dtype=torch.float32), gain=1.0)
        b_attr = torch.randn([1, hidden_size])
        b_attr = torch.nn.init.xavier_uniform_(torch.as_tensor(b_attr, dtype=torch.float32), gain=1.0)
        # 定义模型参数W,其shape为 input_size x hidden_size
        self.W = torch.nn.Parameter(W_attr)
        # 定义模型参数U,其shape为hidden_size x hidden_size
        self.U = torch.nn.Parameter(U_attr)
        # 定义模型参数b,其shape为 1 x hidden_size
        self.b = torch.nn.Parameter(b_attr)

    # 初始化向量
    def init_state(self, batch_size):
        hidden_state = torch.zeros([batch_size, self.hidden_size], dtype=torch.float32)
        return hidden_state

    # 定义前向计算
    def forward(self, inputs, hidden_state=None):
        # inputs: 输入数据, 其shape为batch_size x seq_len x input_size
        batch_size, seq_len, input_size = inputs.shape

        # 初始化起始状态的隐向量, 其shape为 batch_size x hidden_size
        if hidden_state is None:
            hidden_state = self.init_state(batch_size)

        # 循环执行RNN计算
        for step in range(seq_len):
            # 获取当前时刻的输入数据step_input, 其shape为 batch_size x input_size
            step_input = inputs[:, step, :]
            # 获取当前时刻的隐状态向量hidden_state, 其shape为 batch_size x hidden_size
            hidden_state = F.tanh(torch.matmul(step_input, self.W) + torch.matmul(hidden_state, self.U) + self.b)
        return hidden_state


# 初始化参数并运行
W_attr = torch.nn.Parameter(torch.tensor([[0.1, 0.2], [0.1, 0.2]]))
U_attr = torch.nn.Parameter(torch.tensor([[0.0, 0.1], [0.1, 0.0]]))
b_attr = torch.nn.Parameter(torch.tensor([[0.1, 0.1]]))

srn = SRN(2, 2, W_attr=W_attr, U_attr=U_attr, b_attr=b_attr)

inputs = torch.tensor([[[1, 0], [0, 2]]], dtype=torch.float32)
hidden_state = srn(inputs)
print("hidden_state", hidden_state)

Torch框架实现

batch_size, seq_len, input_size = 8, 20, 32
inputs = torch.randn(size=[batch_size, seq_len, input_size])
 
# 设置模型的hidden_size
hidden_size = 32
paddle_srn = nn.RNN(input_size, hidden_size)
self_srn = SRN(input_size, hidden_size)
 
self_hidden_state = self_srn(inputs)
paddle_outputs, paddle_hidden_state = paddle_srn(inputs)
 
print("self_srn hidden_state: ", self_hidden_state.shape)
print("torch_srn outpus:", paddle_outputs.shape)
print("torch_srn hidden_state:", paddle_hidden_state.shape)

NNDL 实验七 循环神经网络(1)RNN记忆能力实验_第7张图片 

可以看到,自己实现的SRN由于没有考虑多层因素,因此没有层次这个维度,因此其输出shape为[8, 32]。同时由于在以上代码使用pytorch内置API实例化SRN时,默认定义的是1层的单向SRN,因此其shape为[1, 8, 32],同时隐状态向量为[8,20, 32]。我们可以将自己实现的SRN与pytorch内置的SRN在输出值的精度上进行对比,这里首先根据pytorch内置的SRN实例化模型(为了进行对比,在实例化时只保留一个偏置,将偏置设置为0),然后提取该模型对应的参数,使用该参数去初始化自己实现的SRN,从而保证两者在参数初始化时是一致的。
首先定义输入数据inputs,然后将该数据分别传入pytorch内置的SRN与自己实现的SRN模型中,最后通过对比两者的隐状态输出向量

# 这里创建一个随机数组作为测试数据,数据shape为batch_size x seq_len x input_size
batch_size, seq_len, input_size, hidden_size = 2, 5, 10, 10
inputs = torch.randn([batch_size, seq_len, input_size])
 
# 设置模型的hidden_size
 
torch_srn = nn.RNN(input_size, hidden_size, bias=False)
 
# 获取torch_srn中的参数,并设置相应的paramAttr,用于初始化SRN
W_attr = torch_srn.weight_ih_l0.T
U_attr = torch_srn.weight_hh_l0.T
self_srn = SRN(input_size, hidden_size, W_attr=W_attr, U_attr=U_attr)
 
# 进行前向计算,获取隐状态向量,并打印展示
self_hidden_state = self_srn(inputs)
torch_outputs, torch_hidden_state = torch_srn(inputs)
print("torch SRN:\n", torch_hidden_state.detach().numpy().squeeze(0))
print("self SRN:\n", self_hidden_state.detach().numpy())

NNDL 实验七 循环神经网络(1)RNN记忆能力实验_第8张图片

可以看到,两者的输出基本是一致的。 

6.1.2.3 线性层

线性层直接使用torch.nn.Linear算子。

6.1.2.4 模型汇总

在定义了每一层的算子之后,我们定义一个数字求和模型Model_RNN4SeqClass,该模型会将嵌入层、SRN层和线性层进行组合,以实现数字求和的功能。

# 基于RNN实现数字预测的模型
class Model_RNN4SeqClass(nn.Module):
    def __init__(self, model, num_digits, input_size, hidden_size, num_classes):
        super(Model_RNN4SeqClass, self).__init__()
        # 传入实例化的RNN层,例如SRN
        self.rnn_model = model
        # 词典大小
        self.num_digits = num_digits
        # 嵌入向量的维度
        self.input_size = input_size
        # 定义Embedding层
        self.embedding = Embedding(num_digits, input_size)
        # 定义线性层
        self.linear = nn.Linear(hidden_size, num_classes)
 
    def forward(self, inputs):
        # 将数字序列映射为相应向量
        inputs_emb = self.embedding(inputs)
        # 调用RNN模型
        hidden_state = self.rnn_model(inputs_emb)
        # 使用最后一个时刻的状态进行数字预测
        logits = self.linear(hidden_state)
        return logits
 
# 实例化一个input_size为4, hidden_size为5的SRN
srn = SRN(4, 5)
# 基于srn实例化一个数字预测模型实例
model = Model_RNN4SeqClass(srn, 10, 4, 5, 19)
# 生成一个shape为 2 x 3 的批次数据
inputs = torch.tensor([[1, 2, 3], [2, 3, 4]])
# 进行模型前向预测
logits = model(inputs)
print(logits)

NNDL 实验七 循环神经网络(1)RNN记忆能力实验_第9张图片

6.1.3 模型训练

6.1.3.1 训练指定长度的数字预测模型

基于RunnerV3类进行训练,只需要指定length便可以加载相应的数据。设置超参数,使用Adam优化器,学习率为 0.001,实例化模型,使用第4.5.4节定义的Accuracy计算准确率。使用Runner进行训练,训练回合数设为500。代码实现如下: 

import os
import random
import torch
import numpy as np
from nndl import Accuracy, RunnerV3
 
# 训练轮次
num_epochs = 500
# 学习率
lr = 0.001
# 输入数字的类别数
num_digits = 10
# 将数字映射为向量的维度
input_size = 32
# 隐状态向量的维度
hidden_size = 32
# 预测数字的类别数
num_classes = 19
# 批大小
batch_size = 8
# 模型保存目录
save_dir = "./checkpoints"
 
# 通过指定length进行不同长度数据的实验
def train(length):
    print(f"\n====> Training SRN with data of length {length}.")
    # 固定随机种子
    np.random.seed(0)
    random.seed(0)
    torch.manual_seed(0)
 
    # 加载长度为length的数据
    data_path = f"D:/datasets/{length}"
    train_examples, dev_examples, test_examples = load_data(data_path)
    train_set, dev_set, test_set = DigitSumDataset(train_examples), DigitSumDataset(dev_examples), DigitSumDataset(test_examples)
    train_loader = torch.utils.data.DataLoader(train_set, batch_size=batch_size)
    dev_loader = torch.utils.data.DataLoader(dev_set, batch_size=batch_size)
    test_loader = torch.utils.data.DataLoader(test_set, batch_size=batch_size)
    # 实例化模型
    base_model = SRN(input_size, hidden_size)
    model = Model_RNN4SeqClass(base_model, num_digits, input_size, hidden_size, num_classes)
    # 指定优化器
    optimizer = torch.optim.Adam(model.parameters(), lr)
    # 定义评价指标
    metric = Accuracy()
    # 定义损失函数
    loss_fn = nn.CrossEntropyLoss()
 
    # 基于以上组件,实例化Runner
    runner = RunnerV3(model, optimizer, loss_fn, metric)
 
    # 进行模型训练
    model_save_path = os.path.join(save_dir, f"best_srn_model_{length}.pdparams")
    runner.train(train_loader, dev_loader, num_epochs=num_epochs, eval_steps=100, log_steps=100, save_path=model_save_path)
 
    return runner

6.1.3.2 多组训练

接下来,分别进行数据长度为10, 15, 20, 25, 30, 35的数字预测模型训练实验,训练后的runner保存至runners字典中。

srn_runners = {}
 
lengths = [10, 15, 20, 25, 30, 35]
for length in lengths:
    runner = train(length)
    srn_runners[length] = runner
[Evaluate]  dev score: 0.38000, dev loss: 1.67490
[Train] epoch: 76/500, step: 2900/19000, loss: 0.60649
[Evaluate]  dev score: 0.48000, dev loss: 1.53901
[Evaluate] best accuracy performence has been updated: 0.42000 --> 0.48000
[Train] epoch: 78/500, step: 3000/19000, loss: 0.41857
[Evaluate]  dev score: 0.45000, dev loss: 1.65597
[Train] epoch: 81/500, step: 3100/19000, loss: 0.89254
[Evaluate]  dev score: 0.56000, dev loss: 1.54675
[Evaluate] best accuracy performence has been updated: 0.48000 --> 0.56000
[Train] epoch: 84/500, step: 3200/19000, loss: 0.25815
[Evaluate]  dev score: 0.45000, dev loss: 1.65926
[Train] epoch: 86/500, step: 3300/19000, loss: 0.53567
[Evaluate]  dev score: 0.50000, dev loss: 1.49461
[Train] epoch: 89/500, step: 3400/19000, loss: 0.50063
[Evaluate]  dev score: 0.58000, dev loss: 1.29072
[Evaluate] best accuracy performence has been updated: 0.56000 --> 0.58000
[Train] epoch: 92/500, step: 3500/19000, loss: 0.44362
[Evaluate]  dev score: 0.59000, dev loss: 1.33886
[Evaluate] best accuracy performence has been updated: 0.58000 --> 0.59000

6.1.3.3 损失曲线展示

定义plot_training_loss函数,分别画出各个长度的数字预测模型训练过程中,在训练集和验证集上的损失曲线

import matplotlib.pyplot as plt
 
def plot_training_loss(runner, fig_name, sample_step):
    plt.figure()
    train_items = runner.train_step_losses[::sample_step]
    train_steps = [x[0] for x in train_items]
    train_losses = [x[1] for x in train_items]
    plt.plot(train_steps, train_losses, color='#e4007f', label="Train loss")
 
    dev_steps = [x[0] for x in runner.dev_losses]
    dev_losses = [x[1] for x in runner.dev_losses]
    plt.plot(dev_steps, dev_losses, color='#f19ec2', linestyle='--', label="Dev loss")
 
    # 绘制坐标轴和图例
    plt.ylabel("loss", fontsize='large')
    plt.xlabel("step", fontsize='large')
    plt.legend(loc='upper right', fontsize='x-large')
 
    plt.savefig(fig_name)
    plt.show()
# 画出训练过程中的损失图
for length in lengths:
    runner = srn_runners[length]
    fig_name = f"./images/6.6_{length}.pdf"
    plot_training_loss(runner, fig_name, sample_step=100)

 NNDL 实验七 循环神经网络(1)RNN记忆能力实验_第10张图片

NNDL 实验七 循环神经网络(1)RNN记忆能力实验_第11张图片 NNDL 实验七 循环神经网络(1)RNN记忆能力实验_第12张图片

NNDL 实验七 循环神经网络(1)RNN记忆能力实验_第13张图片

NNDL 实验七 循环神经网络(1)RNN记忆能力实验_第14张图片

NNDL 实验七 循环神经网络(1)RNN记忆能力实验_第15张图片

 数据集的长度分别为10、15、20、25、30和35. 从输出结果看,随着数据序列长度的增加,虽然训练集损失逐渐逼近于0,但是验证集损失整体趋向越来越大,这表明当序列变长时,SRN模型保持序列长期依赖能力在逐渐变弱,越来越无法学习到有用的知识.

6.1.4 模型评价

在模型评价时,加载不同长度的效果最好的模型,然后使用测试集对该模型进行评价,观察模型在测试集上预测的准确度. 同时记录一下不同长度模型在训练过程中,在验证集上最好的效果。

srn_dev_scores = []
srn_test_scores = []
for length in lengths:
    print(f"Evaluate SRN with data length {length}.")
    runner = srn_runners[length]
    # 加载训练过程中效果最好的模型
    model_path = os.path.join(save_dir, f"best_srn_model_{length}.pdparams")
    runner.load_model(model_path)
 
    # 加载长度为length的数据
    data_path = f"./datasets/{length}"
    train_examples, dev_examples, test_examples = load_data(data_path)
    test_set = DigitSumDataset(test_examples)
    test_loader = torch.io.DataLoader(test_set, batch_size=batch_size)
 
    # 使用测试集评价模型,获取测试集上的预测准确率
    score, _ = runner.evaluate(test_loader)
    srn_test_scores.append(score)
    srn_dev_scores.append(max(runner.dev_scores))
 
for length, dev_score, test_score in zip(lengths, srn_dev_scores, srn_test_scores):
    print(f"[SRN] length:{length}, dev_score: {dev_score}, test_score: {test_score: .5f}")

接下来,将SRN在不同长度的验证集和测试集数据上的表现,绘制成图片进行观察

import matplotlib.pyplot as plt
 
plt.plot(lengths, srn_dev_scores, '-o', color='#e4007f',  label="Dev Accuracy")
plt.plot(lengths, srn_test_scores,'-o', color='#f19ec2', label="Test Accuracy")
 
#绘制坐标轴和图例
plt.ylabel("accuracy", fontsize='large')
plt.xlabel("sequence length", fontsize='large')
plt.legend(loc='upper right', fontsize='x-large')
 
fig_name = "./images/6.7.pdf"
plt.savefig(fig_name)
plt.show()

下图展示了SRN模型在不同长度数据训练出来的最好模型在验证集和测试集上的表现。可以看到,随着序列长度的增加,验证集和测试集的准确度整体趋势是降低的,这同样说明SRN模型保持长期依赖的能力在不断降低

NNDL 实验七 循环神经网络(1)RNN记忆能力实验_第16张图片

总结

此次实验我们进行了循环神经网络的记忆能力实验,并构建数据集生成数据进行数据划分、构造Dataset类、构建嵌入层、SRN层、线性层,一步步实现了模型,最后还画出了各个长度的数字预测模型训练过程中在训练集和验证集上的损失曲线和SRN在不同长度的验证集和测试集数据上的表现曲线

参考

NNDL 实验6(上) - HBU_DAVID - 博客园 (cnblogs.com)

NNDL 实验七 循环神经网络(1)RNN记忆能力实验

循环神经网络 — 动手学深度学习 2.0.0-beta1 documentation (d2l.ai)

你可能感兴趣的:(深度学习)