构造一个神经网络含有两个输入,两个隐含层神经元,两个输出神经元。隐藏层和输出元包括权重和偏置。其结构如下:
设置输入和输出数据 ( x i , y i ) (x_i,y_i) (xi,yi)为 ( 0.05 , 0.01 ) (0.05,0.01) (0.05,0.01)和 ( 0.1 , 0.99 ) (0.1,0.99) (0.1,0.99),并为神经元初始化参数,包括权重和偏置。
BP神经网络的目标是优化权重,使神经网络学会如何正确地将任意输入映射到输出。以输入0.05和0.1,输出0.01和0.99为训练集进行测试。
将输入层的0.05和0.10输入到隐藏层,通过初始化的权重和偏差进行计算可得到隐含层的输出。之后通过激活函数对隐含层的输出进行非线性化处理,激活函数使用Sigmoid。
f ( x ) = 1 1 + e − x f(x)=\dfrac{1}{1+e^{-x}} f(x)=1+e−x1
计算 h 1 h_1 h1过程如下:
n e t h 1 = w 1 ∗ i 1 + w 2 ∗ i 2 + b 1 ∗ 1 n e t h 1 = 0.15 ∗ 0.05 + 0.2 ∗ 0.1 + 0.35 ∗ 1 = 0.3775 \begin{array}{l} n e t_{h 1}=w_{1} * i_{1}+w_{2} * i_{2}+b_{1} * 1 \\ \\ n e t_{h 1}=0.15 * 0.05+0.2 * 0.1+0.35 * 1=0.3775 \end{array} neth1=w1∗i1+w2∗i2+b1∗1neth1=0.15∗0.05+0.2∗0.1+0.35∗1=0.3775
非线性化处理,经过sigmoid激活函数后得:
out h 1 = 1 1 + e − n e t h 1 = 1 1 + e − 0.3775 = 0.593269992 \text { out }_{h 1}=\frac{1}{1+e^{-net_{h1}}}=\frac{1}{1+e^{-0.3775}}=0.593269992 out h1=1+e−neth11=1+e−0.37751=0.593269992
采用相同的方式计算 h 2 h_2 h2得:
out h 2 = 0.596884378 \text { out }_{h 2}=0.596884378 out h2=0.596884378
重复上述过程,利用隐含层的输出计算输出层神经元,下面是 o 1 o_1 o1的计算过程:
net o 1 = w 5 ∗ out h 1 + w 6 ∗ out h 2 + b 2 ∗ 1 \text { net}_{o 1}=w_{5} * \text { out }_{h 1}+w_{6} * \text { out }_{h 2}+b_{2} * 1 neto1=w5∗ out h1+w6∗ out h2+b2∗1
net o 1 = 0.4 ∗ 0.593269992 + 0.45 ∗ 0.596884378 + 0.6 ∗ 1 = 1.105905967 \text { net}_{o 1}=0.4 * 0.593269992+0.45 * 0.596884378+0.6 * 1=1.105905967 neto1=0.4∗0.593269992+0.45∗0.596884378+0.6∗1=1.105905967
out o 1 = 1 1 + e − n e t o 1 = 1 1 + e − 1.105905967 = 0.75136507 \text { out}_{o 1}=\frac{1}{1+e^{-n e t_{o 1}}}=\frac{1}{1+e^{-1.105905967}}=0.75136507 outo1=1+e−neto11=1+e−1.1059059671=0.75136507
使用同样的方法计算出 o 2 o_2 o2:
out o 2 = 0.772928465 \text {out}_{o 2}=0.772928465 outo2=0.772928465
使用均方误差(MSE)函数计算神经元的误差,即使用均方误差作为损失函数。
M S E ( y , y ′ ) = ∑ i = 1 n ( y i − y i ′ ) 2 n MSE(y,y')=\frac{\sum^n_{i=1}(y_i-y_i')^2}{n} MSE(y,y′)=n∑i=1n(yi−yi′)2
其中, y i y_i yi为第 i 个数据的正确答案, y i ′ y'_i yi′为神经网络给出的预测值。在此问题中, o 1 o_1 o1的期望输出为0.01,但神经网络的真是输出为0.75136507,因此误差为:
E o 1 = 1 2 ( target o 1 − o u t o 1 ) 2 = 1 2 ( 0.01 − 0.75136507 ) 2 = 0.274811083 E_{o 1}=\frac{1}{2}\left(\text { target }_{o 1}-o u t_{o 1}\right)^{2}=\frac{1}{2}(0.01-0.75136507)^{2}=0.274811083 Eo1=21( target o1−outo1)2=21(0.01−0.75136507)2=0.274811083
同理得:
E o 2 = 0.023560026 E_{o 2}=0.023560026 Eo2=0.023560026
神经网络的总误差为这些神经元的误差和,即为:
E total = E o 1 + E o 2 = 0.274811083 + 0.023560026 = 0.298371109 E_{\text {total }}=E_{o 1}+E_{o 2}=0.274811083+0.023560026=0.298371109 Etotal =Eo1+Eo2=0.274811083+0.023560026=0.298371109
使用BP神经网络的目标是更新网络中的每个神经元的权重和偏置,以使它们得实际输出更接近目标输出,从而最大限度地减少每个输出神经元的错误。
对于 w 5 w_5 w5,需要知道 w 5 w_5 w5的变化量对于总误差变化量的影响,可表示为 ∂ E total ∂ w 5 \frac{\partial E_{\text {total }}}{\partial w_{5}} ∂w5∂Etotal ,即 w 5 w_5 w5的梯度。
通过链式法则可得:
∂ E total ∂ w 5 = ∂ E total ∂ out o 1 ∗ ∂ out o 1 ∂ net o 1 ∗ ∂ net o 1 ∂ w 5 \frac{\partial E_{\text {total }}}{\partial w_{5}}=\frac{\partial E_{\text {total }}}{\partial \text { out }_{o 1}} * \frac{\partial \text { out }_{o 1}}{\partial \text { net }_{o 1}} * \frac{\partial \text { net }_{o 1}}{\partial w_{5}} ∂w5∂Etotal =∂ out o1∂Etotal ∗∂ net o1∂ out o1∗∂w5∂ net o1
首先要分析输出对总误差的影响:
E total = 1 2 ( target o 1 − out o 1 ) 2 + 1 2 ( target o 2 − out o 2 ) 2 E_{\text {total }}=\frac{1}{2}\left(\text { target}_{o 1}-\text { out }_{o 1}\right)^{2}+\frac{1}{2}\left(\operatorname{target}_{o 2}-\text { out}_{o 2}\right)^{2} Etotal =21( targeto1− out o1)2+21(targeto2− outo2)2
∂ E total ∂ o u t o 1 = 2 ∗ 1 2 ( target o 1 − o u t o 1 ) 2 − 1 ∗ − 1 + 0 \frac{\partial E_{\text {total }}}{\partial o u t_{o 1}}=2 * \frac{1}{2}\left(\text { target}_{o 1}-o u t_{o 1}\right)^{2-1} *-1+0 ∂outo1∂Etotal =2∗21( targeto1−outo1)2−1∗−1+0
∂ E totol ∂ o u t o 1 = − ( target o 1 − o u t o 1 ) = − ( 0.01 − 0.75136507 ) = 0.74136507 \frac{\partial E_{\text {totol }}}{\partial o u t_{o 1}}=-\left(\text { target}_{o 1}-o u t_{o 1}\right)=-(0.01-0.75136507)=0.74136507 ∂outo1∂Etotol =−( targeto1−outo1)=−(0.01−0.75136507)=0.74136507
对激活函数求偏导得:
out o 1 = 1 1 + e − net o 1 \text { out }_{o 1}=\frac{1}{1+e^{-\text {net }_{o 1}}} out o1=1+e−net o11
∂ out o 1 ∂ net o 1 = out o 1 ( 1 − out o 1 ) = 0.75136507 ( 1 − 0.75136507 ) = 0.186815602 \frac{\partial \text { out}_{o 1}}{\partial \text { net}_{o 1}}=\text { out}_{o 1}\left(1-\text { out}_{o 1}\right)=0.75136507(1-0.75136507)=0.186815602 ∂ neto1∂ outo1= outo1(1− outo1)=0.75136507(1−0.75136507)=0.186815602
最后,计算 n e t o 1 net _{o1} neto1对 w 5 w_5 w5的偏导:
n e t o 1 = w 5 ∗ o u t h 1 + w 6 ∗ out h 2 + b 2 ∗ 1 {net}_{o1}=w_{5} * { out }_{h1}+w_{6} * \text { out }_{h2}+b_{2} * 1 neto1=w5∗outh1+w6∗ out h2+b2∗1
∂ n e t o 1 ∂ w 5 = 1 ∗ o u t h 1 ∗ w 5 ( 1 − 1 ) + 0 + 0 = o u t h 1 = 0.593269992 \frac{\partial{ net}_{o 1}}{\partial w_{5}}=1 * { out}_{h 1} * w_{5}^{(1-1)}+0+0={ out }_{h 1}=0.593269992 ∂w5∂neto1=1∗outh1∗w5(1−1)+0+0=outh1=0.593269992
把以上的计算结果乘到一起得:
∂ E t a t a l ∂ w 5 = ∂ E t o t a l ∂ o u t o 1 ∗ ∂ o u t o 1 ∂ n e t o 1 ∗ ∂ n e t a 1 ∂ w 5 \frac{\partial E_{{tatal }}}{\partial w_{5}}=\frac{\partial E_{{total }}}{\partial { out }_{{o1 }}} * \frac{\partial { out}_{o1}}{\partial net_{o 1}} * \frac{\partial net_{a1}}{\partial w_{5}} ∂w5∂Etatal=∂outo1∂Etotal∗∂neto1∂outo1∗∂w5∂neta1
∂ E t o t a l ∂ w 5 = 0.74136507 ∗ 0.186815602 ∗ 0.593269992 = 0.082167041 \frac{\partial E_{{total}}}{\partial w_{5}}=0.74136507 * 0.186815602 * 0.593269992=0.082167041 ∂w5∂Etotal=0.74136507∗0.186815602∗0.593269992=0.082167041
为了减少误差,我们对权重进行修正,即用当前的权重中减去修正值乘以学习率,此处设置学习率为0.5:
w 5 + = w 5 − η ∗ ∂ E t o t a l ∂ w 5 = 0.4 − 0.5 ∗ 0.082167041 = 0.35891648 w_{5}^{+}=w_{5}-\eta * \frac{\partial E_{total}}{\partial w_{5}}=0.4-0.5 * 0.082167041=0.35891648 w5+=w5−η∗∂w5∂Etotal=0.4−0.5∗0.082167041=0.35891648
重复以上步骤可计算出 w 6 w_6 w6、 w 7 w_7 w7和 w 8 w_8 w8:
w 6 + = 0.408666186 w 7 + = 0.511301270 w 8 + = 0.561370121 \begin{array}{l} w_{6}^{+}=0.408666186 \\ w_{7}^{+}=0.511301270 \\ w_{8}^{+}=0.561370121 \end{array} w6+=0.408666186w7+=0.511301270w8+=0.561370121
此时已经计算出输出层的新权重,当计算出隐含层的权重后,对整个网络的权重进行更新,下面计算隐含层的权重。
接下来,继续使用反向传播计算 w 1 w_1 w1、 w 2 w_2 w2、 w 3 w_3 w3和 w 4 w_4 w4。根据链式法则可得:
∂ E t o t a l ∂ w 1 = ∂ E t o t a l ∂ o u t h 1 ∗ ∂ o u t h 1 ∂ n e t h 1 ∗ ∂ n e t h 1 ∂ w 1 \frac{\partial E_{total}}{\partial w_{1}}=\frac{\partial E_{total}}{\partial o u t_{h 1}} * \frac{\partial o u t_{h 1}}{\partial n e t_{h 1}} * \frac{\partial net_{h1}}{\partial w_{1}} ∂w1∂Etotal=∂outh1∂Etotal∗∂neth1∂outh1∗∂w1∂neth1
可视化图像为:
接下来将采用相似的方式处理隐含层的神经元,但是略有不同,考虑到每个隐含层的神经元的输出连接到多个输出, o u t h 1 out_{h1} outh1影响 o u t o 1 out_{o1} outo1和 o u t o 2 out_{o2} outo2,因此计算 ∂ E total d o u t h 1 \frac{\partial E_{\text {total }}}{{dout}_{h 1}} douth1∂Etotal 需考虑所有输出神经元:
∂ E t o t a l ∂ o u t h 1 = ∂ E o 1 ∂ o u t h 1 + ∂ E a 2 ∂ o u t h 1 \frac{\partial E_{total}}{\partial out_{h 1}}=\frac{\partial E_{o1}}{\partial o u t_{h 1}}+\frac{\partial E_{a 2}}{\partial o u t_{h1}} ∂outh1∂Etotal=∂outh1∂Eo1+∂outh1∂Ea2
其中,
∂ E o 1 ∂ o u t h 1 = ∂ E o 1 ∂ n e t o 1 ∗ ∂ n e t o 1 ∂ o u t h 1 \frac{\partial E_{o 1}}{\partial o u t_{h 1}}=\frac{\partial E_{o 1}}{\partial net_{o 1}} * \frac{\partial n e t_{o 1}}{\partial o u t_{h 1}} ∂outh1∂Eo1=∂neto1∂Eo1∗∂outh1∂neto1
可通过之前的结果计算 ∂ E o 1 ∂ n e t o 1 \frac{\partial E_{o1}}{\partial{ net}_{o 1}} ∂neto1∂Eo1:
∂ E a 1 ∂ n e t o 1 = ∂ E o 1 ∂ o u t o 1 ∗ ∂ out t 0 ∂ n e t o 1 = 0.74136507 ∗ 0.186815602 = 0.138498562 \frac{\partial E_{a 1}}{\partial n e t_{o 1}}=\frac{\partial E_{o 1}}{\partial o u t_{o 1}} * \frac{\partial \text { out }_{t_{0}}}{\partial n e t_{o 1}}=0.74136507 * 0.186815602=0.138498562 ∂neto1∂Ea1=∂outo1∂Eo1∗∂neto1∂ out t0=0.74136507∗0.186815602=0.138498562
并且, ∂ n e t o 1 ∂ o u t h 1 = w 5 \frac{\partial { net}_{o 1}}{\partial {out}_{h 1}}=w_5 ∂outh1∂neto1=w5:
n e t o 1 = w 5 ∗ o u t h 1 + w 6 ∗ o u t h 2 + b 2 ∗ 1 { net}_{o 1}=w_{5} * out_{h 1}+w_{6} * out_{h 2}+b_{2} * 1 neto1=w5∗outh1+w6∗outh2+b2∗1
∂ n e t o 1 ∂ o u t h 1 = w 5 = 0.40 \frac{\partial net_{o 1}}{\partial o u t_{h 1}}=w_{5}=0.40 ∂outh1∂neto1=w5=0.40
将其乘起来得:
∂ E o 1 ∂ o u t h 1 = ∂ E o 1 ∂ n e t o 1 ∗ ∂ n e t o 1 ∂ o u t h 1 = 0.138498562 ∗ 0.40 = 0.055399425 \frac{\partial E_{o 1}}{\partial o u t_{h 1}}=\frac{\partial E_{o 1}}{\partial n e t_{o 1}} * \frac{\partial n e t_{o 1}}{\partial o u t_{h 1}}=0.138498562 * 0.40=0.055399425 ∂outh1∂Eo1=∂neto1∂Eo1∗∂outh1∂neto1=0.138498562∗0.40=0.055399425
同理可得,
∂ E o 2 ∂ o u t h 1 = − 0.019049119 \frac{\partial E_{o 2}}{\partial o u t_{h 1}}=-0.019049119 ∂outh1∂Eo2=−0.019049119
因此,
∂ E t o t a l ∂ o u t h 1 = ∂ E o 1 ∂ o u t h 1 + ∂ E o 2 ∂ o u t h 1 = 0.055399425 + − 0.019049119 = 0.036350306 \frac{\partial E_{total}}{\partial out_{h 1}}=\frac{\partial E_{o 1}}{\partial o u t_{h 1}}+\frac{\partial E_{o 2}}{\partial o u t_{h 1}}=0.055399425+-0.019049119=0.036350306 ∂outh1∂Etotal=∂outh1∂Eo1+∂outh1∂Eo2=0.055399425+−0.019049119=0.036350306
现在知道 ∂ E t o t a l ∂ o u t h 1 \frac{\partial E_{total}}{\partial out_{h 1}} ∂outh1∂Etotal,需要计算出 ∂ o u t h 1 ∂ n e t h 1 \frac{\partial out_{h 1}}{\partial net_{h 1}} ∂neth1∂outh1和 ∂ n e t h 1 ∂ w \frac{\partial n e t_{h 1}}{\partial w} ∂w∂neth1:
o u t h 1 = 1 1 + e − n e t h 1 out_{h 1}=\frac{1}{1+e^{-net_{h1}}} outh1=1+e−neth11
∂ o u t h 1 ∂ n e t h 1 = o u t h 1 ( 1 − o u t h 1 ) = 0.59326999 ( 1 − 0.59326999 ) = 0.241300709 \frac{\partial out_{h 1}}{\partial net_{h 1}}=out_{h 1}\left(1-out_{h 1}\right)=0.59326999(1-0.59326999)=0.241300709 ∂neth1∂outh1=outh1(1−outh1)=0.59326999(1−0.59326999)=0.241300709
采用相同的方式计算网络输入 h 1 h_1 h1对 w w w的偏导数:
n e t h 1 = w 1 ∗ i 1 + w 3 ∗ i 2 + b 1 ∗ 1 net_{h 1}=w_{1} * i_{1}+w_{3} * i_{2}+b_{1} * 1 neth1=w1∗i1+w3∗i2+b1∗1
∂ n e t h 1 ∂ w 1 = i 1 = 0.05 \frac{\partial n e t_{h 1}}{\partial w_{1}}=i_{1}=0.05 ∂w1∂neth1=i1=0.05
把它们乘到一起:
∂ E t o t a l ∂ w 1 = ∂ E t o t a t ∂ o u t h 1 ∗ ∂ o u t h 1 ∂ n e t h 1 ∗ ∂ n e t h 1 ∂ w 1 \frac{\partial E_{total}}{\partial w_{1}}=\frac{\partial E_{totat}}{\partial o u t_{h 1}} * \frac{\partial o u t_{h 1}}{\partial n e t_{h 1}} * \frac{\partial n e t_{h 1}}{\partial w_{1}} ∂w1∂Etotal=∂outh1∂Etotat∗∂neth1∂outh1∗∂w1∂neth1
∂ E t o t a l ∂ w 1 = 0.036350306 ∗ 0.241300709 ∗ 0.05 = 0.000438568 \frac{\partial E_{total}}{\partial w_{1}}=0.036350306 * 0.241300709 * 0.05=0.000438568 ∂w1∂Etotal=0.036350306∗0.241300709∗0.05=0.000438568
现在,可以对 w 1 w_1 w1进行更新:
w 1 + = w 1 − η ∗ ∂ E t o t a l ∂ w 1 = 0.15 − 0.5 ∗ 0.000438568 = 0.149780716 w_{1}^{+}=w_{1}-\eta * \frac{\partial E_{total }}{\partial w_{1}}=0.15-0.5 * 0.000438568=0.149780716 w1+=w1−η∗∂w1∂Etotal=0.15−0.5∗0.000438568=0.149780716
重复以上步骤计算 w 2 w_2 w2、 w 3 w_3 w3和 w 4 w_4 w4:
w 2 + = 0.19956143 w 3 + = 0.24975114 w 4 + = 0.29950229 \begin{array}{l} w_{2}^{+}=0.19956143 \\ w_{3}^{+}=0.24975114 \\ w_{4}^{+}=0.29950229 \end{array} w2+=0.19956143w3+=0.24975114w4+=0.29950229
最后,更新所有神经元的权重,当输入 0.05 0.05 0.05和 0.1 0.1 0.1时,网络上的总误差从为 0.298371109 0.298371109 0.298371109转变为 0.291027924 0.291027924 0.291027924。 重复以上过程 10 , 000 10,000 10,000次后,总误差将降到 3.5102 ∗ 1 0 − 5 3.5102*10^{-5} 3.5102∗10−5。 此时,当输入 0.05 0.05 0.05和 0.1 0.1 0.1时,两个输出神经元输出的结果分别为 0.015912196 0.015912196 0.015912196(期望值为 0.01 0.01 0.01)和 0.984065734 0.984065734 0.984065734(期望值为 0.99 0.99 0.99)。训练 20 , 000 20,000 20,000次后,总误差将降到 7.837 ∗ 1 0 − 6 7.837*10^{-6} 7.837∗10−6。
import random
import math
#
# Shorthand:
# "pd_" as a variable prefix means "partial derivative"
# "d_" as a variable prefix means "derivative"
# "_wrt_" is shorthand for "with respect to"
# "w_ho" and "w_ih" are the index of weights from hidden to output layer neurons and input to hidden layer neurons respectively
#
# Comment references:
#
# [1] Wikipedia article on Backpropagation
# http://en.wikipedia.org/wiki/Backpropagation#Finding_the_derivative_of_the_error
# [2] Neural Networks for Machine Learning course on Coursera by Geoffrey Hinton
# https://class.coursera.org/neuralnets-2012-001/lecture/39
# [3] The Back Propagation Algorithm
# https://www4.rgu.ac.uk/files/chapter3%20-%20bp.pdf
class NeuralNetwork:
LEARNING_RATE = 0.5
def __init__(self, num_inputs, num_hidden, num_outputs, hidden_layer_weights = None, hidden_layer_bias = None, output_layer_weights = None, output_layer_bias = None):
self.num_inputs = num_inputs
self.hidden_layer = NeuronLayer(num_hidden, hidden_layer_bias)
self.output_layer = NeuronLayer(num_outputs, output_layer_bias)
self.init_weights_from_inputs_to_hidden_layer_neurons(hidden_layer_weights)
self.init_weights_from_hidden_layer_neurons_to_output_layer_neurons(output_layer_weights)
def init_weights_from_inputs_to_hidden_layer_neurons(self, hidden_layer_weights):
weight_num = 0
for h in range(len(self.hidden_layer.neurons)):
for i in range(self.num_inputs):
if not hidden_layer_weights:
self.hidden_layer.neurons[h].weights.append(random.random())
else:
self.hidden_layer.neurons[h].weights.append(hidden_layer_weights[weight_num])
weight_num += 1
def init_weights_from_hidden_layer_neurons_to_output_layer_neurons(self, output_layer_weights):
weight_num = 0
for o in range(len(self.output_layer.neurons)):
for h in range(len(self.hidden_layer.neurons)):
if not output_layer_weights:
self.output_layer.neurons[o].weights.append(random.random())
else:
self.output_layer.neurons[o].weights.append(output_layer_weights[weight_num])
weight_num += 1
def inspect(self):
print('------')
print('* Inputs: {}'.format(self.num_inputs))
print('------')
print('Hidden Layer')
self.hidden_layer.inspect()
print('------')
print('* Output Layer')
self.output_layer.inspect()
print('------')
def feed_forward(self, inputs):
hidden_layer_outputs = self.hidden_layer.feed_forward(inputs)
return self.output_layer.feed_forward(hidden_layer_outputs)
# Uses online learning, ie updating the weights after each training case
def train(self, training_inputs, training_outputs):
self.feed_forward(training_inputs)
# 1. Output neuron deltas
pd_errors_wrt_output_neuron_total_net_input = [0] * len(self.output_layer.neurons)
for o in range(len(self.output_layer.neurons)):
# ∂E/∂zⱼ
pd_errors_wrt_output_neuron_total_net_input[o] = self.output_layer.neurons[o].calculate_pd_error_wrt_total_net_input(training_outputs[o])
# 2. Hidden neuron deltas
pd_errors_wrt_hidden_neuron_total_net_input = [0] * len(self.hidden_layer.neurons)
for h in range(len(self.hidden_layer.neurons)):
# We need to calculate the derivative of the error with respect to the output of each hidden layer neuron
# dE/dyⱼ = Σ ∂E/∂zⱼ * ∂z/∂yⱼ = Σ ∂E/∂zⱼ * wᵢⱼ
d_error_wrt_hidden_neuron_output = 0
for o in range(len(self.output_layer.neurons)):
d_error_wrt_hidden_neuron_output += pd_errors_wrt_output_neuron_total_net_input[o] * self.output_layer.neurons[o].weights[h]
# ∂E/∂zⱼ = dE/dyⱼ * ∂zⱼ/∂
pd_errors_wrt_hidden_neuron_total_net_input[h] = d_error_wrt_hidden_neuron_output * self.hidden_layer.neurons[h].calculate_pd_total_net_input_wrt_input()
# 3. Update output neuron weights
for o in range(len(self.output_layer.neurons)):
for w_ho in range(len(self.output_layer.neurons[o].weights)):
# ∂Eⱼ/∂wᵢⱼ = ∂E/∂zⱼ * ∂zⱼ/∂wᵢⱼ
pd_error_wrt_weight = pd_errors_wrt_output_neuron_total_net_input[o] * self.output_layer.neurons[o].calculate_pd_total_net_input_wrt_weight(w_ho)
# Δw = α * ∂Eⱼ/∂wᵢ
self.output_layer.neurons[o].weights[w_ho] -= self.LEARNING_RATE * pd_error_wrt_weight
# 4. Update hidden neuron weights
for h in range(len(self.hidden_layer.neurons)):
for w_ih in range(len(self.hidden_layer.neurons[h].weights)):
# ∂Eⱼ/∂wᵢ = ∂E/∂zⱼ * ∂zⱼ/∂wᵢ
pd_error_wrt_weight = pd_errors_wrt_hidden_neuron_total_net_input[h] * self.hidden_layer.neurons[h].calculate_pd_total_net_input_wrt_weight(w_ih)
# Δw = α * ∂Eⱼ/∂wᵢ
self.hidden_layer.neurons[h].weights[w_ih] -= self.LEARNING_RATE * pd_error_wrt_weight
def calculate_total_error(self, training_sets):
total_error = 0
for t in range(len(training_sets)):
training_inputs, training_outputs = training_sets[t]
self.feed_forward(training_inputs)
for o in range(len(training_outputs)):
total_error += self.output_layer.neurons[o].calculate_error(training_outputs[o])
return total_error
class NeuronLayer:
def __init__(self, num_neurons, bias):
# Every neuron in a layer shares the same bias
self.bias = bias if bias else random.random()
self.neurons = []
for i in range(num_neurons):
self.neurons.append(Neuron(self.bias))
def inspect(self):
print('Neurons:', len(self.neurons))
for n in range(len(self.neurons)):
print(' Neuron', n)
for w in range(len(self.neurons[n].weights)):
print(' Weight:', self.neurons[n].weights[w])
print(' Bias:', self.bias)
def feed_forward(self, inputs):
outputs = []
for neuron in self.neurons:
outputs.append(neuron.calculate_output(inputs))
return outputs
def get_outputs(self):
outputs = []
for neuron in self.neurons:
outputs.append(neuron.output)
return outputs
class Neuron:
def __init__(self, bias):
self.bias = bias
self.weights = []
def calculate_output(self, inputs):
self.inputs = inputs
self.output = self.squash(self.calculate_total_net_input())
return self.output
def calculate_total_net_input(self):
total = 0
for i in range(len(self.inputs)):
total += self.inputs[i] * self.weights[i]
return total + self.bias
# Apply the logistic function to squash the output of the neuron
# The result is sometimes referred to as 'net' [2] or 'net' [1]
def squash(self, total_net_input):
return 1 / (1 + math.exp(-total_net_input))
# Determine how much the neuron's total input has to change to move closer to the expected output
#
# Now that we have the partial derivative of the error with respect to the output (∂E/∂yⱼ) and
# the derivative of the output with respect to the total net input (dyⱼ/dzⱼ) we can calculate
# the partial derivative of the error with respect to the total net input.
# This value is also known as the delta (δ) [1]
# δ = ∂E/∂zⱼ = ∂E/∂yⱼ * dyⱼ/dzⱼ
#
def calculate_pd_error_wrt_total_net_input(self, target_output):
return self.calculate_pd_error_wrt_output(target_output) * self.calculate_pd_total_net_input_wrt_input();
# The error for each neuron is calculated by the Mean Square Error method:
def calculate_error(self, target_output):
return 0.5 * (target_output - self.output) ** 2
# The partial derivate of the error with respect to actual output then is calculated by:
# = 2 * 0.5 * (target output - actual output) ^ (2 - 1) * -1
# = -(target output - actual output)
#
# The Wikipedia article on backpropagation [1] simplifies to the following, but most other learning material does not [2]
# = actual output - target output
#
# Alternative, you can use (target - output), but then need to add it during backpropagation [3]
#
# Note that the actual output of the output neuron is often written as yⱼ and target output as tⱼ so:
# = ∂E/∂yⱼ = -(tⱼ - yⱼ)
def calculate_pd_error_wrt_output(self, target_output):
return -(target_output - self.output)
# The total net input into the neuron is squashed using logistic function to calculate the neuron's output:
# yⱼ = φ = 1 / (1 + e^(-zⱼ))
# Note that where ⱼ represents the output of the neurons in whatever layer we're looking at and ᵢ represents the layer below it
#
# The derivative (not partial derivative since there is only one variable) of the output then is:
# dyⱼ/dzⱼ = yⱼ * (1 - yⱼ)
def calculate_pd_total_net_input_wrt_input(self):
return self.output * (1 - self.output)
# The total net input is the weighted sum of all the inputs to the neuron and their respective weights:
# = zⱼ = netⱼ = x₁w₁ + x₂w₂ ...
#
# The partial derivative of the total net input with respective to a given weight (with everything else held constant) then is:
# = ∂zⱼ/∂wᵢ = some constant + 1 * xᵢw₁^(1-0) + some constant ... = xᵢ
def calculate_pd_total_net_input_wrt_weight(self, index):
return self.inputs[index]
###
# Blog post example:
nn = NeuralNetwork(2, 2, 2, hidden_layer_weights=[0.15, 0.2, 0.25, 0.3], hidden_layer_bias=0.35, output_layer_weights=[0.4, 0.45, 0.5, 0.55], output_layer_bias=0.6)
for i in range(10000):
nn.train([0.05, 0.1], [0.01, 0.99])
print(f"epoch:{i}\terror:{round(nn.calculate_total_error([[[0.05, 0.1], [0.01, 0.99]]]), 9)}")
# XOR example:
# training_sets = [
# [[0, 0], [0]],
# [[0, 1], [1]],
# [[1, 0], [1]],
# [[1, 1], [0]]
# ]
# nn = NeuralNetwork(len(training_sets[0][0]), 5, len(training_sets[0][1]))
# for i in range(10000):
# training_inputs, training_outputs = random.choice(training_sets)
# nn.train(training_inputs, training_outputs)
# print(i, nn.calculate_total_error(training_sets))
参考:https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/