I extracted the contours of an image, that you can see here:
However, it has some noise.
How can I smooth the noise? I did a close up to make clearer what I want to meant
Original image that I've used:
Code:
rMaskgray = cv2.imread('redmask.jpg', cv2.CV_LOAD_IMAGE_GRAYSCALE)
(thresh, binRed) = cv2.threshold(rMaskgray, 50, 255, cv2.THRESH_BINARY)
Rcontours, hier_r = cv2.findContours(binRed,cv2.RETR_CCOMP,cv2.CHAIN_APPROX_SIMPLE)
r_areas = [cv2.contourArea(c) for c in Rcontours]
max_rarea = np.max(r_areas)
CntExternalMask = np.ones(binRed.shape[:2], dtype="uint8") * 255
for c in Rcontours:
if(( cv2.contourArea(c) > max_rarea * 0.70) and (cv2.contourArea(c)< max_rarea)):
cv2.drawContours(CntExternalMask,[c],-1,0,1)
cv2.imwrite('contour1.jpg', CntExternalMask)
解决方案
Try an upgraded to OpenCV 3.1.0. After some code adaptations for the new version as shown below, I tried it out with OpenCV version 3.1.0 and did not see any of the effects you are describing.
import cv2
import numpy as np
print cv2.__version__
rMaskgray = cv2.imread('5evOn.jpg', 0)
(thresh, binRed) = cv2.threshold(rMaskgray, 50, 255, cv2.THRESH_BINARY)
_, Rcontours, hier_r = cv2.findContours(binRed,cv2.RETR_CCOMP,cv2.CHAIN_APPROX_SIMPLE)
r_areas = [cv2.contourArea(c) for c in Rcontours]
max_rarea = np.max(r_areas)
CntExternalMask = np.ones(binRed.shape[:2], dtype="uint8") * 255
for c in Rcontours:
if(( cv2.contourArea(c) > max_rarea * 0.70) and (cv2.contourArea(c)< max_rarea)):
cv2.drawContours(CntExternalMask,[c],-1,0,1)
cv2.imwrite('contour1.jpg', CntExternalMask)