白噪声 White Noise

文章目录

  • 【 白噪声概述 】
  • 【 高斯白噪声 】

【 白噪声概述 】

  • 白噪声(white noise)
    功率谱密度在整个频域内是常数的噪声,即所有频率具有相同能量密度(信号在各个频率上的能量相同)的随机噪声。
    对于白噪声而言,频率谱在所有频率下取值相同,就是说能量和频率没有关系,也就是说,能量和周期没有关系。所以白噪声不具有周期性。—来源:说活自相关函数,功率谱与白噪声
  • 功率谱密度
    功率谱的微分。单位频带内的“功率”(即均方值)
    功率谱密度值—频率值的关系曲线下的面积就是均方值,当均值为零时均方值等于方差,即响应标准偏差的平方值。
  • 功率谱
    功率谱密度函数的简称,它定义为单位频带内的信号功率。它表示了信号功率随着频率的变化情况,即信号功率在频域的分布状况。 现在是用快速傅立叶变换(FFT)来计算离散傅立叶变换(DFT),用DFT的幅度平方作为信号中功率的度量。
  • 均值
    x ‾ = ∑ i = 1 N x i N \overline{x}=\frac{\sum_{i=1}^{N}{x_i}}{N} x=Ni=1Nxi
  • 方差
    s 2 = ∑ i = 1 N ( x i − x ‾ ) 2 N s^2=\frac{\sum_{i=1}^{N}{(x_i-\overline{x})^2}}{N} s2=Ni=1N(xix)2

【 高斯白噪声 】

高斯白噪声的功率谱密度服从均匀分布,幅度分布服从高斯分布。

clc;% 清除命令窗口。
clf;% 清除当前图形。
clear;% 清除工作空间的变量和函数。

fs=1000;%【采样频率: fs Hz】
T=5;%【采样总时长:T 秒】
n=round(T*fs);%【采样点数量:n 个】向右取整
t=linspace(0,T,n);%【采样时间轴:t】生成n个时间点,这些点的间距为 (T-0)/(n-1)。
y=wgn(1,n,0);%【生成高斯白噪声:y】1*n矩阵,第三个参数为噪声信号的功率,这边设置为0就是0dbW。

plot(t,y);
title('高斯白噪声信号时域');
xlabel('t/s');
ylabel('幅度');

fft_y=fftshift(fft(y));
f=linspace(-fs/2,fs/2,n);
figure;
plot(f,abs(fft_y));
title('高斯白噪声信号频谱');
xlabel('f/Hz');
ylabel('幅度');

白噪声 White Noise_第1张图片
白噪声 White Noise_第2张图片

从上图可以看出,我们所生成的高斯白噪声的频谱不是严格意义上的白噪声,这是因为我们是对一个样本作频谱分析,并没有得到统计意义上均匀的功率谱。

你可能感兴趣的:(DSP,dsp)