- Hive 窗口函数与分析函数深度解析:开启大数据分析的新维度
自节码
大数据hive数据分析hadoop
Hive窗口函数与分析函数深度解析:开启大数据分析的新维度在当今大数据蓬勃发展的时代,Hive作为一款强大的数据仓库工具,其窗口函数和分析函数犹如一把把精巧的手术刀,助力数据分析师们精准地剖析海量数据,挖掘出深藏其中的价值宝藏。本文将带领大家深入探索HiveQL中这些神奇函数的奥秘,从版本演进、功能特性到丰富多样的实际应用示例,全方位地呈现它们在大数据处理领域的卓越魅力。一、版本回溯与知识宝库指引
- 当下是否入行AI ? 一场关于未来的赌注与机遇
dami_king
随笔人工智能
当下是否入行AI:一场关于未来的赌注与机遇在科技的浪潮中,人工智能(AI)无疑是最为汹涌的一波。它不仅改变了我们与机器互动的方式,还重塑了各行各业的面貌。面对这样的变革,许多人站在十字路口犹豫不决——现在进入AI领域还来得及吗?这个问题的答案,并非简单的“是”或“否”。今天,让我们一起深入探讨这个话题,看看对于想要投身AI的人来说,当下是不是一个好的时机。AI行业的现状与发展2024年,AI已经从
- 阿里云通义开源首个推理步骤评估标准,探索AI推理模型新路径
量子位
1月16日,阿里云通义开源全新的数学推理过程奖励模型Qwen2.5-Math-PRM,72B及7B尺寸模型性能均大幅超越同类开源过程奖励模型;在识别推理错误步骤能力上,Qwen2.5-Math-PRM以7B的小尺寸就超越了GPT-4o。同时,通义团队还开源首个步骤级的评估标准ProcessBench,填补了大模型推理过程错误评估的空白。在当前大模型推理过程中,不时存在逻辑错误或编造看似合理的推理步
- 大数据新视界 -- 大数据大厂之 Hive 数据压缩算法对比与选择(下)(20 / 30)
青云交
大数据新视界#Hive之道大数据Hive数据压缩压缩算法对比选择因素案例分析实时数据处理数据存储优化sql
亲爱的朋友们,热烈欢迎你们来到青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而我的博客,正是这样一个温暖美好的所在。在这里,你们不仅能够收获既富有趣味又极为实用的内容知识,还可以毫无拘束地畅所欲言,尽情分享自己独特的见解。我真诚地期待着你们的到来,愿我们能在这片小小的天地里共同成长,共同进步。本博客的精华专栏:大数
- 大数据新视界 -- 大数据大厂之 Hive 数据安全:权限管理体系的深度解读(上)(15/ 30)
青云交
大数据新视界#Hive之道大数据Hive集成大数据工具集成模式优化策略未来趋势数据一致性
亲爱的朋友们,热烈欢迎你们来到青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而我的博客,正是这样一个温暖美好的所在。在这里,你们不仅能够收获既富有趣味又极为实用的内容知识,还可以毫无拘束地畅所欲言,尽情分享自己独特的见解。我真诚地期待着你们的到来,愿我们能在这片小小的天地里共同成长,共同进步。本博客的精华专栏:大数
- 大数据新视界 -- 大数据大厂之 Impala 性能优化:融合人工智能预测的资源预分配秘籍(上)(29 / 30)
青云交
大数据新视界#Impala之道大数据Impala人工智能预测资源预分配数据收集模型构建查询性能优化
亲爱的朋友们,热烈欢迎你们来到青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而我的博客,正是这样一个温暖美好的所在。在这里,你们不仅能够收获既富有趣味又极为实用的内容知识,还可以毫无拘束地畅所欲言,尽情分享自己独特的见解。我真诚地期待着你们的到来,愿我们能在这片小小的天地里共同成长,共同进步。本博客的精华专栏:大数
- AI代码生成器赋能软件原型快速构建:吴恩达的最佳实践指南
前端
快速构建软件原型对于验证想法、迭代产品至关重要。而随着人工智能技术的飞速发展,AI代码生成器等AI辅助编程工具的出现,为开发者提供了前所未有的效率提升。本文将结合吴恩达教授的观点,探讨如何利用AI工具,高效构建软件原型。吴恩达教授强调选择合适的技术栈并有效利用AI工具是关键,这将帮助开发者在短时间内完成原型开发,快速验证其想法。选择并精通“有主见”的技术栈:效率为王吴恩达教授推荐的技术栈——Pyt
- MiniMax开源,突破传统Transformer架构,震撼业界
人工智能模型
就在昨天,AI领域迎来了一项重大突破——MiniMax发布并开源了新一代01系列模型。国产大模型市场再掀巨浪,传统Transformer架构或许将不再是唯一选择。MiniMax-Text-01模型:https://huggingface.co/MiniMaxAI/MiniMax-Text-01MiniMax-VL-01模型:https://huggingface.co/MiniMaxAI/Mini
- 大数据新视界 -- 大数据大厂之 Impala 性能提升:高级执行计划优化实战案例(下)(18/30)
青云交
大数据新视界#Impala之道大数据Impala高级执行计划优化实战案例金融电商性能提升
亲爱的朋友们,热烈欢迎你们来到青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而我的博客,正是这样一个温暖美好的所在。在这里,你们不仅能够收获既富有趣味又极为实用的内容知识,还可以毫无拘束地畅所欲言,尽情分享自己独特的见解。我真诚地期待着你们的到来,愿我们能在这片小小的天地里共同成长,共同进步。本博客的精华专栏:大数
- 大数据新视界 --大数据大厂之数据脱敏技术在大数据中的应用与挑战
青云交
大数据新视界大数据数据脱敏发展现状应用场景挑战解决方案未来趋势
亲爱的朋友们,热烈欢迎你们来到青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而我的博客,正是这样一个温暖美好的所在。在这里,你们不仅能够收获既富有趣味又极为实用的内容知识,还可以毫无拘束地畅所欲言,尽情分享自己独特的见解。我真诚地期待着你们的到来,愿我们能在这片小小的天地里共同成长,共同进步。本博客的精华专栏:大数
- 大数据新视界 --大数据大厂之 Apache Beam:统一批流处理的大数据新贵
青云交
大数据新视界大数据ApacheBeam批流统一性能优化案例展示数据分区容错机制
亲爱的朋友们,热烈欢迎你们来到青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而我的博客,正是这样一个温暖美好的所在。在这里,你们不仅能够收获既富有趣味又极为实用的内容知识,还可以毫无拘束地畅所欲言,尽情分享自己独特的见解。我真诚地期待着你们的到来,愿我们能在这片小小的天地里共同成长,共同进步。本博客的精华专栏:大数
- 大数据新视界 --大数据大厂之 Volcano:大数据计算任务调度的新突破
青云交
Volcano之道大数据新视界大数据Volcano任务调度效率提升资源优化技术融合实践指导
亲爱的朋友们,热烈欢迎你们来到青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而我的博客,正是这样一个温暖美好的所在。在这里,你们不仅能够收获既富有趣味又极为实用的内容知识,还可以毫无拘束地畅所欲言,尽情分享自己独特的见解。我真诚地期待着你们的到来,愿我们能在这片小小的天地里共同成长,共同进步。本博客的精华专栏:大数
- 大数据新视界 --大数据大厂之 GraphQL 在大数据查询中的创新应用:优化数据获取效率
青云交
GraphQL之道大数据新视界大数据GraphQL数据查询性能优化多数据源整合实时数据分析移动端应用优化数据库
亲爱的朋友们,热烈欢迎你们来到青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而我的博客,正是这样一个温暖美好的所在。在这里,你们不仅能够收获既富有趣味又极为实用的内容知识,还可以毫无拘束地畅所欲言,尽情分享自己独特的见解。我真诚地期待着你们的到来,愿我们能在这片小小的天地里共同成长,共同进步。本博客的精华专栏:大数
- 大数据新视界 --大数据大厂之AI 与大数据的融合:开创智能未来的新篇章
青云交
大数据新视界AI&人工智能大数据人工智能智能环保智能教育智能农业ChatGPT智能能源数据库
亲爱的朋友们,热烈欢迎你们来到青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而我的博客,正是这样一个温暖美好的所在。在这里,你们不仅能够收获既富有趣味又极为实用的内容知识,还可以毫无拘束地畅所欲言,尽情分享自己独特的见解。我真诚地期待着你们的到来,愿我们能在这片小小的天地里共同成长,共同进步。本博客的精华专栏:大数
- 从RNN到Transformer:生成式AI技术演变与未来展望
非著名架构师
人工智能rnntransformer
生成式人工智能(GenerativeAI)近年来取得了令人瞩目的进展,其背后的核心技术是自回归模型的不断演进。从传统的递归神经网络(RNN)到革命性的Transformer架构,本文将全面剖析这一技术发展历程。一、RNN:生成式模型的起点1.RNN的基本原理递归神经网络(RecurrentNeuralNetwork,RNN)是一种专为处理序列数据设计的神经网络架构。其核心思想是通过循环连接的隐藏状
- 开源多模态推理模型QVQ:视觉推理能力的突破与未来展望
前端
近年来,AI代码生成器等人工智能技术飞速发展,多模态推理模型作为其中一个重要分支,正展现出越来越强大的能力。它能够理解和处理多种类型的数据,例如图像、文本、音频等,并进行复杂的推理和决策。阿里云通义千问团队近日发布的QVQ-72B-Preview模型,就是一个极具代表性的例子。该模型开源且在视觉推理方面表现突出,为多模态模型的发展树立了新的里程碑。QVQ模型的核心能力与突破QVQ-72B-Prev
- WebKit 的渲染引擎优化策略
简介:WebKit是一个开源的网页浏览引擎,被广泛应用于多种浏览器,包括Safari和许多移动设备浏览器。其高效的渲染性能和灵活的架构使得WebKit成为现代浏览器开发的重要组成部分。在这篇文章中,我们将深入探讨WebKit在渲染引擎优化方面的策略,尤其关注其在提高页面加载速度和渲染效率方面的技术实现。正文:什么是WebKit?WebKit起源于KHTML和KJS,最初由苹果公司用于Safari浏
- Python网络爬虫入门教程:从抓取数据到应用实现
冷夜雨.
python
引言在大数据时代,信息就是力量。各种网站每天产生着海量的数据,这些数据中蕴藏着巨大的商业价值和研究价值。如何快速、自动化地从互联网上获取这些信息,成为了数据科学、人工智能、市场分析等领域中的一个重要课题。Python,作为一门易于学习且功能强大的编程语言,其丰富的库和工具使得构建网络爬虫变得非常简单。网络爬虫(WebScraper)是一种自动化程序,用来从网页中提取信息。无论是用于数据分析、竞争对
- 编程语言大揭秘:各显神通的编程世界
冷夜雨.
pythonjavac++c#javascript
在当今数字化的时代,编程语言犹如一把把神奇的钥匙,打开了通往不同技术领域的大门。从网页开发到人工智能,从数据分析到游戏制作,每一种编程语言都有其独特的优势与适用场景。今天,就让我们一同深入探索几种主流编程语言的奥秘,看看在什么情况下它们能发挥最大的威力。Python:万能胶水,快速开发的利器Python以其简洁、易读的语法著称,仿佛是用自然语言编写代码一般,新手程序员也能快速上手。它拥有庞大且丰富
- 区块链领域新进展:技术创新与应用拓展齐头并进
近期,区块链领域不断涌现出新的消息,展现出这一技术在多个方面的持续发展和创新应用。在技术创新方面,我国自主可控、性能良好的区块链软硬件技术体系长安链启动链通全国社保数据。据中国日报1月3日消息,在国家重点研发计划的牵引下,长安链高性能融合隐私计算,在确保原始数据不被泄露的前提下,支持社保大数据服务信息在企业、金融机构可信安全流通和共享,助力实体经济高质量发展。长安链自2021年初问世以来,凭借核心
- 开源项目怎么搞钱·下
原文地址我经常被问「开源项目怎么赚钱」?这周,我和开源密钥管理工具Infisical的VladMatsiiako聊了聊,深入探讨了开源公司为什么能盈利、怎样盈利。SAAS/云SaaS销售的是软件的托管版本,其中部分产品(例如管理功能)可能没有开源。GitLab、Supabase和Infisical就是这样做的;维基百科的「Open-coremodel」条目下还有更多类似案例。鉴于有时开源部分的代码
- Apache SeaTunnel 社区 2024 年度报告
数据库
2024年是ApacheSeaTunnel社区高速成长的一年。从技术创新到用户生态,从版本发布到社区活动,我们见证了无数开发者与企业在数据集成领域的探索与突破。展望2025展望未来,ApacheSeaTunnel社区将继续秉承开源精神,为全球用户提供更强大、更易用的数据集成工具。我们的目标包括支持更多数据源和目标:扩展连接器生态,满足用户的复杂需求。性能优化:提升大规模数据同步效率,进一步降低延迟
- 大数据新视界 -- Hive 数据仓库设计模式:星型与雪花型架构(2 - 16 - 3)
青云交
大数据新视界#Hive之道Hive数据仓库星型架构雪花型架构对比分析大数据应用Hive大数据
亲爱的朋友们,热烈欢迎你们来到青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而我的博客,正是这样一个温暖美好的所在。在这里,你们不仅能够收获既富有趣味又极为实用的内容知识,还可以毫无拘束地畅所欲言,尽情分享自己独特的见解。我真诚地期待着你们的到来,愿我们能在这片小小的天地里共同成长,共同进步。本博客的精华专栏:大数
- Docker基础教程
由于格式和图片解析问题,可能会影响阅读体验,可前往博客阅读原文Docker是一个开源的容器化平台,可以帮助开发者和运维人员更快地构建、发布和运行应用程序。Docker使用容器技术,将应用程序和其依赖项打包到一个可移植的容器中,从而实现跨平台、快速部署和易于管理的目的。本文主要从docker的基础开始学习,包括基本架构、全局命令、镜像、仓库、容器扫码关注公众号,查看更多优质文章Docker架构Doc
- 关于2025年智能化招聘管理系统平台发展趋势
yongyoudayee
数智招聘
2025年,招聘管理领域正站在变革的十字路口,全新的技术浪潮与不断变化的职场生态相互碰撞,促使招聘管理系统成为重塑企业人才战略的关键力量。智能化招聘管理系统平台在这一背景下迅速崛起,其发展趋势不仅影响企业的招聘效率与质量,还深刻改变着人力资源市场的生态格局。一、智能化招聘管理系统平台的核心特征与发展趋势1.深度学习算法与大数据分析的应用2025年的招聘管理系统将依托深度学习算法与大数据分析,彻底颠
- 《C++ 赋能强化学习:Q - learning 算法的实现之路》
c++人工智能深度学习
在当今科技飞速发展的时代,人工智能无疑是最热门的领域之一,而强化学习作为其中的重要分支,正逐渐改变着我们解决复杂问题的方式。Q-learning算法作为强化学习中的经典算法,在众多领域如游戏、机器人控制、资源管理等有着广泛的应用前景。本文将深入探讨如何用C++实现强化学习中的Q-learning算法,带您领略C++在人工智能领域的强大魅力。一、强化学习与Q-learning算法概述强化学习是一种通
- 如何让 localStorage 数据实现实时响应
重大事项:重大事项提前通知!快来围观,不容错过!极限科技一直致力于为开发者和企业提供优质的开源工具,提升整个技术生态的活力。除了维护国内最流行的分词器analysis-ik和analysis-pinyin,也在不断推动更多高质量开源产品的诞生。在极限科技成立三周年之际,公司宣布以下产品和工具已全面开源:INFINIFrameworkINFINIGatewayINFINIConsoleINFINIA
- 《C 语言向量运算:点亮人工智能几何计算之路》
c人工智能深度学习
在人工智能蓬勃发展的时代,数学运算作为其坚实的基石发挥着不可替代的作用。而向量的点积与叉积运算,更是在人工智能的几何计算领域有着独特且关键的地位。今天,就让我们一同深入探讨如何在C语言中实现向量的点积、叉积运算,并领略其在人工智能几何计算中的精彩应用。向量,作为既有大小又有方向的量,在几何世界里是极为重要的元素。点积,也被称为数量积,它的几何意义与向量的投影密切相关。当我们计算两个向量的点积时,其
- Elasticsearch搭建框架以及测试
小郭爱编程
elasticsearch学习介绍Elasticsearch简介Elasticsearch是一个建立在全文搜索引擎ApacheLucene™基础上的搜索引擎,可以说Lucene是当今最先进,最高效的全功能开源搜索引擎框架。用通俗的话理解就是:将不同服务器需要的数据,弄成一个文档,放到es中去,当我们去搜索的时候,就是去搜索文档。es是一个非关系型数据库,和redis一样,redis是一个键值对的数
- [Python数据可视化] Plotly:交互式数据可视化的强大工具
William数据分析
pythonpython数据分析数据可视化
引言:在数据分析和可视化的世界中,Plotly是一颗耀眼的明星。它是一个开源的交互式图表库,支持多种编程语言,包括Python、R和JavaScript。Plotly的强大之处在于它能够创建出既美观又具有高度交互性的图表,使得数据探索和分析变得更加直观和有趣。本文将详细介绍Plotly的功能,并通过实际示例展示其在数据可视化中的应用。Plotly的优势:交互性:Plotly图表具有丰富的交互功能,
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号