AttributeError: ‘Text‘ object has no property ‘FontProperties‘ 错误解决

  今天,在学习《机器学习》-KNN近邻算法中,约会网站案例中,在第三步分析数据:使用Matplotlib化画图时,产生AttributeError: 'Text' object has no property 'FontProperties'  错误解决

原代码如下:
 

def file2matrix(filename):
    #打开文件
    fr = open(filename)
    #读取文件所有内容
    arrayLines = fr.readlines()
    #得到文件行数
    numberOfLines = len(arrayLines)
    #返回的NumPy矩阵,解析完成的数据:numberOfLines行,3列
    # 生成对应的空矩阵
    # 例如:zeros(2,3)就是生成一个 2*3(2行三列的)的矩阵,各个位置上全是 0
    returnMat = np.zeros((numberOfLines,3))
    #返回的分类标签向量
    classLabelVector = []
    #行的索引值
    index = 0
    for line in arrayLines:
        #s.strip(rm),当rm空时,默认删除空白符(包括'\n','\r','\t',' ')
        line = line.strip()
        #使用s.split(str="",num=string,cout(str))将字符串根据'\t'分隔符进行切片。
        listFormLine = line.split('\t')
        #将数据前三列提取出来,存放到returnMat的NumPy矩阵中,也就是特征矩阵
        returnMat[index,:] = listFormLine[0:3]
        # 每列的类别数据,就是 label 标签数据
        classLabelVector.append(int(listFormLine[-1]))
        index += 1
    return returnMat, classLabelVector


"""
函数说明:可视化数据
Parameters:
    datingDataMat - 特征矩阵
    datingLabels - 分类Label
Returns:
    无
"""
def showdatas(datingDataMat, datingLabels):
    #设置汉字格式
    font = FontProperties(fname=r"c:\windows\fonts\simsun.ttc", size=14)
    #将fig画布分隔成1行1列,不共享x轴和y轴,fig画布的大小为(13,8)
    #当nrow=2,nclos=2时,代表fig画布被分为四个区域,axs[0][0]表示第一行第一个区域
    fig, axs = plt.subplots(nrows=2, ncols=2,sharex=False, sharey=False, figsize=(13,8))

    numberOfLabels = len(datingLabels)
    LabelsColors = []
    for i in datingLabels:
        if i == 1:
            LabelsColors.append('black')
        if i == 2:
            LabelsColors.append('orange')
        if i == 3:
            LabelsColors.append('red')
    #画出散点图,以datingDataMat矩阵的第一(飞行常客例程)、第二列(玩游戏)数据画散点数据,散点大小为15,透明度为0.5
    axs[0][0].scatter(x=datingDataMat[:,0], y=datingDataMat[:,1], color=LabelsColors,s=15, alpha=.5)
    #设置标题,x轴label,y轴label
    axs0_title_text = axs[0][0].set_title(u'每年获得的飞行常客里程数与玩视频游戏所消耗时间占比',FontProperties=font)
    axs0_xlabel_text = axs[0][0].set_xlabel(u'每年获得的飞行常客里程数',FontProperties=font)
    axs0_ylabel_text = axs[0][0].set_ylabel(u'玩视频游戏所消耗时间占',FontProperties=font)
    plt.setp(axs0_title_text, size=9, weight='bold', color='red')
    plt.setp(axs0_xlabel_text, size=7, weight='bold', color='black')
    plt.setp(axs0_ylabel_text, size=7, weight='bold', color='black')

    #画出散点图,以datingDataMat矩阵的第一(飞行常客例程)、第三列(冰激凌)数据画散点数据,散点大小为15,透明度为0.5
    axs[0][1].scatter(x=datingDataMat[:,0], y=datingDataMat[:,2], color=LabelsColors,s=15, alpha=.5)
    #设置标题,x轴label,y轴label
    axs1_title_text = axs[0][1].set_title(u'每年获得的飞行常客里程数与每周消费的冰激淋公升数',FontProperties=font)
    axs1_xlabel_text = axs[0][1].set_xlabel(u'每年获得的飞行常客里程数',FontProperties=font)
    axs1_ylabel_text = axs[0][1].set_ylabel(u'每周消费的冰激淋公升数',FontProperties=font)
    plt.setp(axs1_title_text, size=9, weight='bold', color='red')
    plt.setp(axs1_xlabel_text, size=7, weight='bold', color='black')
    plt.setp(axs1_ylabel_text, size=7, weight='bold', color='black')

    #画出散点图,以datingDataMat矩阵的第二(玩游戏)、第三列(冰激凌)数据画散点数据,散点大小为15,透明度为0.5
    axs[1][0].scatter(x=datingDataMat[:,1], y=datingDataMat[:,2], color=LabelsColors,s=15, alpha=.5)
    #设置标题,x轴label,y轴label
    axs2_title_text = axs[1][0].set_title(u'玩视频游戏所消耗时间占比与每周消费的冰激淋公升数',FontProperties=font)
    axs2_xlabel_text = axs[1][0].set_xlabel(u'玩视频游戏所消耗时间占比',FontProperties=font)
    axs2_ylabel_text = axs[1][0].set_ylabel(u'每周消费的冰激淋公升数',FontProperties=font)
    plt.setp(axs2_title_text, size=9, weight='bold', color='red')
    plt.setp(axs2_xlabel_text, size=7, weight='bold', color='black')
    plt.setp(axs2_ylabel_text, size=7, weight='bold', color='black')
    #设置图例
    didntLike = mlines.Line2D([], [], color='black', marker='.',
                      markersize=6, label='didntLike')
    smallDoses = mlines.Line2D([], [], color='orange', marker='.',
                      markersize=6, label='smallDoses')
    largeDoses = mlines.Line2D([], [], color='red', marker='.',
                      markersize=6, label='largeDoses')
    #添加图例
    axs[0][0].legend(handles=[didntLike,smallDoses,largeDoses])
    axs[0][1].legend(handles=[didntLike,smallDoses,largeDoses])
    axs[1][0].legend(handles=[didntLike,smallDoses,largeDoses])
    #显示图片
    plt.show()

调用函数,产生错误:

AttributeError: ‘Text‘ object has no property ‘FontProperties‘ 错误解决_第1张图片

 最终,发现报错原因为拼写错误:
AttributeError: ‘Text‘ object has no property ‘FontProperties‘ 错误解决_第2张图片

你可能感兴趣的:(深度学习实战-自学笔记,数据结构,二分查找,算法)