- 深入了解 CDN:概念、原理、过程、作用及工作场景
羊村懒哥
网络网络加速缓存
目录一、CDN的概念二、CDN的工作原理三、CDN的工作过程四、CDN的作用五、CDN可结合使用的技术六、CDN能够解决的网络问题七、CDN的工作场景在当今互联网飞速发展的时代,用户对于网页加载速度和内容获取的时效性要求越来越高。CDN(ContentDeliveryNetwork,⭐内容分发网络)应运而生,它在提升网络性能和用户体验方面发挥着关键作用。本文将详细介绍CDN的概念、工作原理、工作过
- NETworkManager-v2025.1.18.0-开源网络管理与故障排除工具
私人珍藏库
windows网络
NETworkManager链接:https://pan.xunlei.com/s/VOJWBmfe1dtEI9-_qNMdFKJAA1?pwd=z8xt#
- SIP协议ALG实现逻辑【概览】(一)
看兵马俑的程序员
NAT+ALG网络网络协议
SIP(SessionInitiationProtocol)是一种用于控制多媒体通信会话的信令协议,广泛应用于VoIP(VoiceoverIP)、视频通话、即时消息等实时通信应用中。ALG(ApplicationLayerGateway,应用层网关)是通过理解应用层协议来调整网络流量的网络设备功能,尤其在NAT(NetworkAddressTranslation,网络地址转换)环境下的通信场景中,
- Pytorch实现之利用特征分布的差异来指导GAN的训练
这张生成的图像能检测吗
优质GAN模型训练自己的数据集GAN系列pytorch生成对抗网络人工智能神经网络深度学习计算机视觉机器学习
简介简介:FIDGAN通过将FID损失引入GAN的训练过程,显著提升了生成图像的质量。其核心思想是利用特征分布的差异来指导生成器的训练,同时通过使用轻量级的MobileNet-v3提高了计算效率。这种方法在图像生成任务中具有广泛的应用前景。论文题目:FIDGAN:AGenerativeAdversarialNetworkwithAnInceptionDistance(FIDGAN:具有初始距离的生
- 从代码到专利:如何用自注意力机制实现高效序列转换?——深度解析Google的Transformer架构
CodePatentMaster
transformer深度学习人工智能AIGC架构
本文将从五个方面【技术问题、技术手段、技术效果、代码实现逻辑和工程落地建议】解读以下专利。US201816021971A,ATTENTION-BASEDSEQUENCETRANSDUCTIONNEURALNETWORKS一、技术问题:为什么需要自注意力机制?在传统的序列转换任务(如机器翻译、语音识别等)中,循环神经网络(RNN)和卷积神经网络(CNN)是常用的模型架构。然而,这些模型存在以下问题:
- Linux: network: tcp spurious retrans 的一个原因
mzhan017
网络linuxtcp/ip网络spurious
最近分析问题的时候,从wireshark里看有:tcpspuriousretrans的包,309这个是307的retransmission,而且在308回复了ACK。那为什么会重传?从网上找了一些,比如https://www.packetsafari.com/blog/2021/10/23/tcp-spurious-retransmissions/但是根据里面的介绍,不能解释当前遇到的情况,但是里
- 医学顶会 MICCAI‘24 | COVID19 至肺炎:使用 CNN Transformer 位置感知特征编码网络对多区域肺部严重程度进行分类
小白学视觉
医学图像处理论文解读cnntransformer分类深度学习医学图像处理医学图像顶会论文解读
本文内容只为星球内部成员学习和学术交流,请勿用作他用论文信息题目:COVID19toPneumonia:MultiRegionLungSeverityClassificationusingCNNTransformerPosition-AwareFeatureEncodingNetworkCOVID19至肺炎:使用CNNTransformer位置感知特征编码网络对多区域肺部严重程度进行分类作者:Jo
- 符号学习初学代码——从开普勒第三定律到万有引力定律
Merci美滋滋
学习python机器学习
备注PINN——physicsinformedneuralnetworkSR——symbolicregression代码详细分析见评论区链接一、SR_testimportnumpyasnpT=np.array([0.241,0.615,1,1.881,11.862]).reshape(-1,1)R=np.array([0.381,0.723,1,1.524,5.023]).reshape(-1,1
- arXiv每日推荐-3.4:语音/音频每日论文速递
sapienst
语音识别语音识别
同步公众号(arXiv每日学术速递)【1】SELD-TCN:SoundEventLocalization&DetectionviaTemporalConvolutionalNetworks标题:SELD-TCN:基于时间卷积网络的声音事件定位与检测作者:KarimGuirguis,BinYang备注:5pages,3tables,2figures.SubmittedtoEUSIPCO2020链接:
- Pytorch实现论文之一种基于扰动卷积层和梯度归一化的生成对抗网络
这张生成的图像能检测吗
GAN系列优质GAN模型训练自己的数据集pytorch人工智能机器学习生成对抗网络神经网络计算机视觉深度学习
简介简介:提出了一种针对鉴别器的梯度惩罚方法和在鉴别器中采用扰动卷积,拟解决锐梯度空间引起的训练不稳定性问题和判别器的记忆问题。论文题目:APerturbedConvolutionalLayerandGradientNormalizationbasedGenerativeAdversarialNetwork(一种基于扰动卷积层和梯度归一化的生成对抗网络)会议:20244thInternationa
- Pytorch实现之在LSGAN中结合重建损失
这张生成的图像能检测吗
GAN系列优质GAN模型训练自己的数据集pytorch人工智能python
简介简介:这篇论文在LSGAN的基础上结合了重建损失来产生通过传统不良数据检测(BDD)机制的人工测量。这篇博客的主要内容是关于实现了重建损失与LSGAN的结合。论文题目:FalseDataInjectionAttacksBasedonLeastSquaresGenerativeAdversarialNetworkswithReconstructionLoss(基于重构损失最小二乘生成对抗网络的虚
- LLM论文笔记 9: Neural Networks and the Chomsky Hierarchy
Zhouqi_Hua
大模型论文阅读论文阅读人工智能深度学习笔记语言模型
Arxiv日期:2022.9.29机构:GoogleDeepMind/Stanford关键词transformer架构原理乔姆斯基体系长度泛化核心结论1.虽然Transformer理论上具有图灵完备性,但在实践中能力受到位置不变性和有限记忆的限制2.Transformer在一些任务中表现较差,例如正则语言任务(如ParityCheck),表明其与Chomsky层级的对齐性不佳3.Transform
- PyTorch `.pth` 转 ONNX:从模型训练到跨平台部署
MO__YE
人工智能
PyTorch.pth转ONNX:从模型训练到跨平台部署在深度学习里,模型的格式决定了它的可用性。如果你是PyTorch用户,你可能熟悉.pth文件,它用于存储训练好的模型。但当你想在不同的环境(如TensorRT、OpenVINO、ONNXRuntime)部署模型时,.pth可能并不适用。这时,ONNX(OpenNeuralNetworkExchange)就必不可少。本文目录:什么是.pth文件
- Pytorch实现之SCGAN实现人脸修复
这张生成的图像能检测吗
优质GAN模型训练自己的数据集GAN系列pytorch人工智能python生成对抗网络深度学习计算机视觉gan
简介简介:在输入端对输入图像采用掩码遮挡部分图像,之后通过跳跃生成对抗网络生成修复掩码部分的人脸进而生成完整的人脸数据。对于生成器结构的损失采用MES损失,对于鉴别器的结构采用WGAN-GP的损失。鉴别器为双鉴别器结构,一个负责检验完整图像的真假,一个负责检验掩码部分图像的真假。论文题目:SCGAN:GenerativeAdversarialNetworksofSkipConnectionforF
- PyTorch `.pth` 转 ONNX:从模型训练到跨平台部署
MO__YE
pytorch人工智能python
PyTorch.pth转ONNX:从模型训练到跨平台部署在深度学习里,模型的格式决定了它的可用性。如果你是PyTorch用户,你可能熟悉.pth文件,它用于存储训练好的模型。但当你想在不同的环境(如TensorRT、OpenVINO、ONNXRuntime)部署模型时,.pth可能并不适用。这时,ONNX(OpenNeuralNetworkExchange)就必不可少。本文目录:什么是.pth文件
- 解决Docker容器内无法访问外网问题
docker
开启宿主机的ipv4转发功能修改配置echo"net.ipv4.ip_forward=1">>/etc/sysctl.conf重启networksystemctlrestartnetwork看开启宿主机的ipv4转发功能状态sysctlnet.ipv4.ip_forward//(0:标识未开启:标识开启)#net.ipv4.ip_forward=1重启dockersystemctlrestartd
- nexus部署及配置https访问
lj907722644
NexusDockerhttps网络协议httpdocker数据仓库
1.使用docker-compose部署nexusdocker-compose-nexus.ymlversion:"3"services:nexus:container_name:my-nexusimage:sonatype/nexus3:3.67.1hostname:my-nexusnetwork_mode:hostports:-8081:8081deploy:resources:limits:
- AWS Certified Solutions Architect
彻骨寒风
aws
NetworkACLsarestateless,andsecuritygroupsarestatefulTheALBstopssendingtraffictotheinstance.Runtheclusterson-premisesusingAmazonEKSDistro.DynamoDB:StoringmetadataforS3objectsHigh-performancereadsandwri
- CentOS 8 配置bond
清风 001
AI大模型底层建设网络
CentOS8网络配置的详细步骤和对应的配置文件内容。1.配置聚合网卡(Bonding)配置intranet聚合网卡在/etc/sysconfig/network-scripts/目录下创建ifcfg-intranet文件,内容如下:TYPE=BondNAME=intranetDEVICE=intranetONBOOT=yesBOOTPROTO=noneIPADDR=10.2.1.22PREFIX
- AWS Solutions Architect Associate 备考大纲
apa45866
数据库
脑子一热决定学个AWS的证书。以下是Lynda.com的培训课程给出的学习大纲,我参考了一下别的学习资料,感觉靠谱,于是整理出来贴在这里。太长不看版:AWS最主要的4个服务类别是Storage,Compute,Database和Network。其中Storage和Compute的各项服务是SolutionsArchitect考试的重中之重。EC2和IAM估计是考的最多的。下面给出各个服务类别的考试
- Java永久性修改Linux(Debian/Ubuntu)网络
久违放晴
linuxjavadebianubuntu网络
文章目录前言一、实现思路二、手动配置网络(一)编辑/etc/network/interfaces文件(二)重启网络(三)查看网络配置三、shell脚本配置网络(一)脚本执行流程(二)编写脚本(三)完整代码(四)脚本执行方式(五)直接覆盖版(六)使用工具包的实现方案四、通过Java调用shell脚本(一)SSH远程连接调用(二)使用本地指令调用的方案总结前言对于一些私有化部署的系统,部署完毕后经常需
- Linux 固定 IP 地址和网关
法号:行颠
Linuxlinux
Linux固定IP地址和网关查看IPifconfigifconfigeth0ipaddripaddrshoweth0查看网关iprouteshowroute-nnetstat-rn设置固定IP//配置静态IP文件/etc/network/interfaces$vi/etc/network/interfacesautoeth0ifaceeth0inetstaticaddress192.168.0.2
- 使用opencv实现深度学习的图片与视频的超分辨率
人工智能研究所
人工智能之计算机视觉opencv深度学习视频超分辨率图片超分辨率
图片超分辨率什么是视频与图片的超分辨率,总结一下便是给一张分辨率比较低的图片,进行超分辨率的处理后,生成比较清晰的高分辨率的图片,上图图片完美解释了超分辨率的过程,由于不同的算法不同,处理的结果也不相同,本期我们介绍一下如何进行图片的超分辨率的处理。·EDSR模型图像超分辨率EDSR:EnhancedDeepResidualNetworksforSingleImageSuper-Resolutio
- OpenCV机器学习(1)人工神经网络 - 多层感知器类cv::ml::ANN_MLP
村北头的码农
OpenCVopencv机器学习人工智能
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述cv::ml::ANN_MLP是OpenCV库中的一部分,用于实现人工神经网络-多层感知器(ArtificialNeuralNetwork-Multi-LayerPerceptron,ANN-MLP)。它提供了一种方式来创建和训练多层感知器模型,以解决分类、回归等
- MongoDB分片集群搭建及扩容
老虎大人
准备工作在CentOS7上安装MongoDB分片集群6Servers代表:6台服务器上都要操作.环境准备On6Servers给虚拟机设置静态IPvi/etc/sysconfig/network-scripts/ifcfg-enp0s3修改以下#BOOTPROTO=“dhcp”BOOTPROTO=“static”IPADDR=“.xx.xx.xx.xx”NETMASK=“255.255.255.0”
- python 学习曲线函数_如何使用学习曲线来诊断你的LSTM模型的行为?(附代码)...
weixin_39576066
python学习曲线函数
LSTM是一种时间递归神经网络,适合于处理和预测时间序列中间隔和延迟相对较长的重要事件。在自然语言处理、语言识别等一系列的应用上都取得了很好的效果。《LongShortTermMemoryNetworkswithPython》是澳大利亚机器学习专家JasonBrownlee的著作,里面详细介绍了LSTM模型的原理和使用。该书总共分为十四个章节,具体如下:第一章:什么是LSTMs?第二章:怎么样训练
- 图的存储结构:邻接矩阵和邻接表
Lee Neo
#数据结构数据结构
图graph顶点vertex弧arc弧尾tail弧头head有向图digraph边edge无向图undigraph权weight网network邻接点adjacent依附incident度degree出度OutDegree入度Indegree路径path邻接矩阵adjacencymatrix一、邻接矩阵存储(数组表示)借助矩阵(二维数组)表示元素(图的任意两个顶点)之间的关系用一维数组(顶点表)存
- 【深度学习】计算机视觉(CV)-图像分类-ResNet(Residual Network,残差网络)
IT古董
深度学习人工智能深度学习计算机视觉分类
ResNet(ResidualNetwork,残差网络)是一种深度卷积神经网络(CNN)架构,由何恺明(KaimingHe)等人在2015年提出,最初用于ImageNet竞赛,并在分类任务上取得了冠军。ResNet的核心思想是残差学习(ResidualLearning),它通过跳跃连接(SkipConnections)解决了深度神经网络训练中的梯度消失和梯度爆炸问题,使得非常深的网络(如50层、1
- <Attention Is All You Need>:全网首次提出Transformer模型论文中英文对照学习
kingking44
transformer学习人工智能
论文摘要英文Thedominantsequencetransductionmodelsarebasedoncomplexrecurrentorconvolutionalneuralnetworksthatincludeanencoderandadecoder.Thebestperformingmodelsalsoconnecttheencoderanddecoderthroughanattenti
- CentOS7.6 服务器负载均衡——LVS-DR实战案例
*旧梦*
自动化运维服务器负载均衡lvs网络运维李心怡
1、前期环境准备1.准备两台主机IP地址主机名角色内存大小192.168.145.11LVS-DR负载均衡器2G192.138.145.23web1服务器12G192.168.145.34web1服务器22G设置主机名hostnamectlset-hostname+主机名su设置IP地址然后重启网卡vim/etc/sysconfig/network-scripts/ifcfg-ens33syste
- 辗转相处求最大公约数
沐刃青蛟
C++漏洞
无言面对”江东父老“了,接触编程一年了,今天发现还不会辗转相除法求最大公约数。惭愧惭愧!
为此,总结一下以方便日后忘了好查找。
1.输入要比较的两个数a,b
忽略:2.比较大小(因为后面要的是大的数对小的数做%操作)
3.辗转相除(用循环不停的取余,如a%b,直至b=0)
4.最后的a为两数的最大公约数
&
- F5负载均衡会话保持技术及原理技术白皮书
bijian1013
F5负载均衡
一.什么是会话保持? 在大多数电子商务的应用系统或者需要进行用户身份认证的在线系统中,一个客户与服务器经常经过好几次的交互过程才能完成一笔交易或者是一个请求的完成。由于这几次交互过程是密切相关的,服务器在进行这些交互过程的某一个交互步骤时,往往需要了解上一次交互过程的处理结果,或者上几步的交互过程结果,服务器进行下
- Object.equals方法:重载还是覆盖
Cwind
javagenericsoverrideoverload
本文译自StackOverflow上对此问题的讨论。
原问题链接
在阅读Joshua Bloch的《Effective Java(第二版)》第8条“覆盖equals时请遵守通用约定”时对如下论述有疑问:
“不要将equals声明中的Object对象替换为其他的类型。程序员编写出下面这样的equals方法并不鲜见,这会使程序员花上数个小时都搞不清它为什么不能正常工作:”
pu
- 初始线程
15700786134
暑假学习的第一课是讲线程,任务是是界面上的一条线运动起来。
既然是在界面上,那必定得先有一个界面,所以第一步就是,自己的类继承JAVA中的JFrame,在新建的类中写一个界面,代码如下:
public class ShapeFr
- Linux的tcpdump
被触发
tcpdump
用简单的话来定义tcpdump,就是:dump the traffic on a network,根据使用者的定义对网络上的数据包进行截获的包分析工具。 tcpdump可以将网络中传送的数据包的“头”完全截获下来提供分析。它支 持针对网络层、协议、主机、网络或端口的过滤,并提供and、or、not等逻辑语句来帮助你去掉无用的信息。
实用命令实例
默认启动
tcpdump
普通情况下,直
- 安卓程序listview优化后还是卡顿
肆无忌惮_
ListView
最近用eclipse开发一个安卓app,listview使用baseadapter,里面有一个ImageView和两个TextView。使用了Holder内部类进行优化了还是很卡顿。后来发现是图片资源的问题。把一张分辨率高的图片放在了drawable-mdpi文件夹下,当我在每个item中显示,他都要进行缩放,导致很卡顿。解决办法是把这个高分辨率图片放到drawable-xxhdpi下。
&nb
- 扩展easyUI tab控件,添加加载遮罩效果
知了ing
jquery
(function () {
$.extend($.fn.tabs.methods, {
//显示遮罩
loading: function (jq, msg) {
return jq.each(function () {
var panel = $(this).tabs(&
- gradle上传jar到nexus
矮蛋蛋
gradle
原文地址:
https://docs.gradle.org/current/userguide/maven_plugin.html
configurations {
deployerJars
}
dependencies {
deployerJars "org.apache.maven.wagon
- 千万条数据外网导入数据库的解决方案。
alleni123
sqlmysql
从某网上爬了数千万的数据,存在文本中。
然后要导入mysql数据库。
悲剧的是数据库和我存数据的服务器不在一个内网里面。。
ping了一下, 19ms的延迟。
于是下面的代码是没用的。
ps = con.prepareStatement(sql);
ps.setString(1, info.getYear())............;
ps.exec
- JAVA IO InputStreamReader和OutputStreamReader
百合不是茶
JAVA.io操作 字符流
这是第三篇关于java.io的文章了,从开始对io的不了解-->熟悉--->模糊,是这几天来对文件操作中最大的感受,本来自己认为的熟悉了的,刚刚在回想起前面学的好像又不是很清晰了,模糊对我现在或许是最好的鼓励 我会更加的去学 加油!:
JAVA的API提供了另外一种数据保存途径,使用字符流来保存的,字符流只能保存字符形式的流
字节流和字符的难点:a,怎么将读到的数据
- MO、MT解读
bijian1013
GSM
MO= Mobile originate,上行,即用户上发给SP的信息。MT= Mobile Terminate,下行,即SP端下发给用户的信息;
上行:mo提交短信到短信中心下行:mt短信中心向特定的用户转发短信,你的短信是这样的,你所提交的短信,投递的地址是短信中心。短信中心收到你的短信后,存储转发,转发的时候就会根据你填写的接收方号码寻找路由,下发。在彩信领域是一样的道理。下行业务:由SP
- 五个JavaScript基础问题
bijian1013
JavaScriptcallapplythisHoisting
下面是五个关于前端相关的基础问题,但却很能体现JavaScript的基本功底。
问题1:Scope作用范围
考虑下面的代码:
(function() {
var a = b = 5;
})();
console.log(b);
什么会被打印在控制台上?
回答:
上面的代码会打印 5。
&nbs
- 【Thrift二】Thrift Hello World
bit1129
Hello world
本篇,不考虑细节问题和为什么,先照葫芦画瓢写一个Thrift版本的Hello World,了解Thrift RPC服务开发的基本流程
1. 在Intellij中创建一个Maven模块,加入对Thrift的依赖,同时还要加上slf4j依赖,如果不加slf4j依赖,在后面启动Thrift Server时会报错
<dependency>
- 【Avro一】Avro入门
bit1129
入门
本文的目的主要是总结下基于Avro Schema代码生成,然后进行序列化和反序列化开发的基本流程。需要指出的是,Avro并不要求一定得根据Schema文件生成代码,这对于动态类型语言很有用。
1. 添加Maven依赖
<?xml version="1.0" encoding="UTF-8"?>
<proj
- 安装nginx+ngx_lua支持WAF防护功能
ronin47
需要的软件:LuaJIT-2.0.0.tar.gz nginx-1.4.4.tar.gz &nb
- java-5.查找最小的K个元素-使用最大堆
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
public class MinKElement {
/**
* 5.最小的K个元素
* I would like to use MaxHeap.
* using QuickSort is also OK
*/
public static void
- TCP的TIME-WAIT
bylijinnan
socket
原文连接:
http://vincent.bernat.im/en/blog/2014-tcp-time-wait-state-linux.html
以下为对原文的阅读笔记
说明:
主动关闭的一方称为local end,被动关闭的一方称为remote end
本地IP、本地端口、远端IP、远端端口这一“四元组”称为quadruplet,也称为socket
1、TIME_WA
- jquery ajax 序列化表单
coder_xpf
Jquery ajax 序列化
checkbox 如果不设定值,默认选中值为on;设定值之后,选中则为设定的值
<input type="checkbox" name="favor" id="favor" checked="checked"/>
$("#favor&quo
- Apache集群乱码和最高并发控制
cuisuqiang
apachetomcat并发集群乱码
都知道如果使用Http访问,那么在Connector中增加URIEncoding即可,其实使用AJP时也一样,增加useBodyEncodingForURI和URIEncoding即可。
最大连接数也是一样的,增加maxThreads属性即可,如下,配置如下:
<Connector maxThreads="300" port="8019" prot
- websocket
dalan_123
websocket
一、低延迟的客户端-服务器 和 服务器-客户端的连接
很多时候所谓的http的请求、响应的模式,都是客户端加载一个网页,直到用户在进行下一次点击的时候,什么都不会发生。并且所有的http的通信都是客户端控制的,这时候就需要用户的互动或定期轮训的,以便从服务器端加载新的数据。
通常采用的技术比如推送和comet(使用http长连接、无需安装浏览器安装插件的两种方式:基于ajax的长
- 菜鸟分析网络执法官
dcj3sjt126com
网络
最近在论坛上看到很多贴子在讨论网络执法官的问题。菜鸟我正好知道这回事情.人道"人之患好为人师" 手里忍不住,就写点东西吧. 我也很忙.又没有MM,又没有MONEY....晕倒有点跑题.
OK,闲话少说,切如正题. 要了解网络执法官的原理. 就要先了解局域网的通信的原理.
前面我们看到了.在以太网上传输的都是具有以太网头的数据包. 
- Android相对布局属性全集
dcj3sjt126com
android
RelativeLayout布局android:layout_marginTop="25dip" //顶部距离android:gravity="left" //空间布局位置android:layout_marginLeft="15dip //距离左边距
// 相对于给定ID控件android:layout_above 将该控件的底部置于给定ID的
- Tomcat内存设置详解
eksliang
jvmtomcattomcat内存设置
Java内存溢出详解
一、常见的Java内存溢出有以下三种:
1. java.lang.OutOfMemoryError: Java heap space ----JVM Heap(堆)溢出JVM在启动的时候会自动设置JVM Heap的值,其初始空间(即-Xms)是物理内存的1/64,最大空间(-Xmx)不可超过物理内存。
可以利用JVM提
- Java6 JVM参数选项
greatwqs
javaHotSpotjvmjvm参数JVM Options
Java 6 JVM参数选项大全(中文版)
作者:Ken Wu
Email:
[email protected]
转载本文档请注明原文链接 http://kenwublog.com/docs/java6-jvm-options-chinese-edition.htm!
本文是基于最新的SUN官方文档Java SE 6 Hotspot VM Opt
- weblogic创建JMC
i5land
weblogicjms
进入 weblogic控制太
1.创建持久化存储
--Services--Persistant Stores--new--Create FileStores--name随便起--target默认--Directory写入在本机建立的文件夹的路径--ok
2.创建JMS服务器
--Services--Messaging--JMS Servers--new--name随便起--Pers
- 基于 DHT 网络的磁力链接和BT种子的搜索引擎架构
justjavac
DHT
上周开发了一个磁力链接和 BT 种子的搜索引擎 {Magnet & Torrent},本文简单介绍一下主要的系统功能和用到的技术。
系统包括几个独立的部分:
使用 Python 的 Scrapy 框架开发的网络爬虫,用来爬取磁力链接和种子;
使用 PHP CI 框架开发的简易网站;
搜索引擎目前直接使用的 MySQL,将来可以考虑使
- sql添加、删除表中的列
macroli
sql
添加没有默认值:alter table Test add BazaarType char(1)
有默认值的添加列:alter table Test add BazaarType char(1) default(0)
删除没有默认值的列:alter table Test drop COLUMN BazaarType
删除有默认值的列:先删除约束(默认值)alter table Test DRO
- PHP中二维数组的排序方法
abc123456789cba
排序二维数组PHP
<?php/*** @package BugFree* @version $Id: FunctionsMain.inc.php,v 1.32 2005/09/24 11:38:37 wwccss Exp $*** Sort an two-dimension array by some level
- hive优化之------控制hive任务中的map数和reduce数
superlxw1234
hivehive优化
一、 控制hive任务中的map数: 1. 通常情况下,作业会通过input的目录产生一个或者多个map任务。 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改);2. 
- Spring Boot 1.2.4 发布
wiselyman
spring boot
Spring Boot 1.2.4已于6.4日发布,repo.spring.io and Maven Central可以下载(推荐使用maven或者gradle构建下载)。
这是一个维护版本,包含了一些修复small number of fixes,建议所有的用户升级。
Spring Boot 1.3的第一个里程碑版本将在几天后发布,包含许多