[Auto-Aug] Scale-aware Automatic Automentation for Object Detection(CVPR. 2021)

[Auto-Aug] Scale-aware Automatic Automentation for Object Detection(CVPR. 2021)_第1张图片

1. Motivation

  • 这篇文章主要关注于目标检测中的数据增强。

    This paper focuses on data augmentation for object detection.

  • 之前的工作,对于如何将尺度适应性融入网络的方法主要来源与网络的结构(FPN)以及数据增强。

  • Previous work handles this challenge which brings the scale adaptation to the network efficiently mainly from two aspects, namely network architecture and data augmentation.

  • Though inspiring performance gain has achieved, these data augmentation strategies usually rely on heavy expert experience.

  • Thus, scale-aware property and efficiency issue are essential to address for searching augmentation in box-level tasks.

2. Contribution

  • In this paper, we propose a new way to automatically learn scale-aware data augmentation strategies for object detection and relevant box-level tasks.

  • We first introduce scale-awareness to the search space from two image-levels and box-levels.

    For image-level augmentations, zoom-in and -out operations are included with their probabilities and zooming ratios for search.

    For box-level augmentations, the augmenting areas are generalized with a new searchable parameter, i.e., area ratio.

3. Method

The designed scale-aware search space contains both image-level and box-level augmentations.

3.1 Scale-aware Search Space

3.1.1 Image-Level augmentations

3.1.2 Box-Level augmentations

[Auto-Aug] Scale-aware Automatic Automentation for Object Detection(CVPR. 2021)_第2张图片

引入可学习的参数 area-ratio

  • Different from [51], the proposed approach further smooths the augmentations and relaxes it to contain learnable factors, i.e., area ratio.

传统的方法会带来2个问题,一个是原始图像和增强图像的边界的gap,另一个是训练和测试时候的gap。

  • previous box-level augmentation [51] works exactly bring two issues, which generate an obvi- ous boundary gap between the augmented and original region, and which brings the gap between training and inference.

为了解决这个问题,作者将原始的矩形增强替换为了高斯方法的增强。

  • To solve this issue, we extend the original rectangle augmentation to a gaussian-based manner.

增强区域A的公式如下,其中α表示Gaussian map,I和T分别表示Input以及Transform。作者认为这种disigned gaussian-based方法可以soften边界的gap。

  • The second issue in previous operations is the lack of considering receptive fields and object scales.

如表1所示,如果将COCO 验证集中的context信息(也就是background)删除,那么APs会降低,但是APl会增大。这就给了作者一个启发,仅仅对boxes内或外增强并不能解决所有尺度的物体。因此作者引出了area ratio这个参数,使得增强区域自适应物体的大小。

  • This motivates us that augmentations merely inside/outside object boxes may not deal with objects in all scales appropriately.
  • To this end, we introduce a searchable parameter, area ratio, which makes the aug area adaptive to object sizes.

因此,高斯图可以被box annotations(xc, yc, h, w)进一步表示为公式3:

augmentation area V用公式4表示:

[Auto-Aug] Scale-aware Automatic Automentation for Object Detection(CVPR. 2021)_第3张图片

3.1.3 Search space summary

总体的搜索空间是 ( 6 2 ) 2 × ( ( ( 6 × 6 2 ) × ( 8 × 6 2 ) ) 5 × 1 0 3 ) = 1. 2 30 (6^2)^2 \times (((6 \times 6^2)\times (8 \times 6^2))^5 \times 10^3) = 1.2^{30} (62)2×(((6×62)×(8×62))5×103)=1.230

3.2 Scale-aware Estimation Metric

  • The evaluation metric is established based on an observation that balanced optimization over different scales would be beneficial to training.
image-20210712221147450

3.3 Search Framework

4. Experiment

你可能感兴趣的:(学习)