PyTorch深度学习快速入门学习笔记

此文章仅为本人的学习笔记,记录学习过程。
侵权删。

视频地址:https://www.bilibili.com/video/BV1hE411t7RN?share_source=copy_web

P1,P2,P3.PyTorch环境的配置及安装

1.安装 Anaconda

网址: www.anaconda.com

有序的管理环境

以后,你有可能会遇到不同的环境需要不同的版本的环境。比如一个项目需要pytorch 0.4 ,而另一个项目要用到pytorch 1.0 。不肯能运行一个项目就更换一个环境,那就太费事了。
所以,Anaconda集成的conda包就可以解决这个问题,它可以分别创造两个屋子,相互隔离。一个房子安装 0.4版本,一个房子安装1.0版本。需要哪个版本就去哪一个屋子工作。

1.首先使用conda指令创建一个屋子,叫做 pytorch(可自定义);
指令如下:

conda create -n pytorch python=3.6

其中,conda 是指调用conda包,create 是创建的意思, -n 是指后面是屋子的名字, pytorch是屋子的名字(可自定义),python=3.6 是指创建的屋子,是python3.6版本。
2.之后激活屋子
指令如下:

conda active pytorch

其中 pytorch指的是你要进入的环境。
PyTorch深度学习快速入门学习笔记_第1张图片

2.Pytorch安装

https://blog.csdn.net/qq_41273406/article/details/118311409

P4.python中两大法宝函数

dir()  # 打开,看看其中有哪些内容
help() # 说明书,如何使用这个工具

PyTorch深度学习快速入门学习笔记_第2张图片

PyTorch深度学习快速入门学习笔记_第3张图片

P5. Pytorch数据加载

from torch.utils.data import Dataset
import cv2
from PIL import Image
import os
class MyData(Dataset):
    def __init__(self, root_dir, label_dir):
        self.root_dir = root_dir
        self.label_dir = label_dir
        self.path = os.path.join(self.root_dir, self.label_dir) #将两个地址加起来
        self.img_path = os.listdir(self.path) #


    def __getitem__(self, idx):
        img_name = self.img_path[idx]
        img_item_path = os.path.join(self.path, img_name)
        img = Image.open(img_item_path)
        lable = self.label_dir
        return img, lable

    def __len__(self):
        return len(self.img_path)

root_dir = "data/train"
ants_label_dir = "ants_image"
bees_label_dir = "bees_image"

ants_dataset = MyData(root_dir, ants_label_dir)
bees_dataset = MyData(root_dir, bees_label_dir)

train_dataset = ants_dataset + bees_dataset

P7. Tensorboard的使用1

from torch.utils.tensorboard import SummaryWriter

writer = SummaryWriter("logs")

# writer.add_image()  #图像
# writer.add_scalar() #
for i in range(100):
    writer.add_scalar("y=x", i, i)
    writer.add_scalar("y=2x", 2*i, i)


writer.close()

运行完会产生logs文件夹
PyTorch深度学习快速入门学习笔记_第4张图片

PyTorch深度学习快速入门学习笔记_第5张图片

可以修改端口:默认端口:6006
在这里插入图片描述

在这里插入图片描述
如果没有数据可以换一个浏览器,我在Google上可以看到。

PyTorch深度学习快速入门学习笔记_第6张图片

P8. Tensorboard的使用2

from torch.utils.tensorboard import SummaryWriter
import numpy as np
from PIL import Image
writer = SummaryWriter("logs")

image_path = "data/train/ants_image/0013035.jpg"#图片路径
img_PIL = Image.open(image_path)
img_array = np.array(img_PIL) #将数据转换成numpy类型

writer.add_image("名字", img_array, 1, dataformats='HWC')#dataformats='HWC'是选择通道数, 1是步长


writer.close()

刷新网址
PyTorch深度学习快速入门学习笔记_第7张图片

P9.Transforms的使用

from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms
from PIL import Image
# python的用法 ---> tensor 数据类型
# 通过 transforms.ToTensor 去看两个问题
#1.transforms该如何使用
#2.为什么我们需要Tensor数据类型


# img_path = r"E:\PyCharm_Demo\learn_pytorch\data\train\bees_image\16838648_415acd9e3f.jpg" #绝对路径 r 取消转义
img_path = "data/train/bees_image/16838648_415acd9e3f.jpg"#相对路径
img = Image.open(img_path)

#1.transforms该如何使用
tensor_trans = transforms.ToTensor()
tensor_img = tensor_trans(img)
print(tensor_img)

# 2.
writer = SummaryWriter("logs")
writer.add_image("Tensor_img", tensor_img)

writer.close()




PyTorch深度学习快速入门学习笔记_第8张图片

PyTorch深度学习快速入门学习笔记_第9张图片

P12.常见的Transforms

from PIL import Image
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms

writer = SummaryWriter("logs")
img = Image.open("images/img.png")
print(img)

# ToTensor的使用
trans_totensor = transforms.ToTensor()
img_tensor = trans_totensor(img)
writer.add_image("ToTensor", img_tensor)

#Normalize的使用(归一化)
print(img_tensor[0][0][0])
trans_norm = transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]) #提供标准差
img_norm = trans_norm(img_tensor)
print(img_norm[0][0][0])
writer.add_image("Normalize", img_norm)



writer.close()

PyTorch深度学习快速入门学习笔记_第10张图片

PyTorch深度学习快速入门学习笔记_第11张图片

from PIL import Image
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms

writer = SummaryWriter("logs")
img = Image.open("images/img.png")
print(img)

# ToTensor的使用
trans_totensor = transforms.ToTensor()
img_tensor = trans_totensor(img)
writer.add_image("ToTensor", img_tensor)

#Normalize的使用(归一化)
print(img_tensor[0][0][0])
trans_norm = transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]) #提供标准差
img_norm = trans_norm(img_tensor)
print(img_norm[0][0][0])
writer.add_image("Normalize", img_norm)

# Resize
print(img.size)
trans_resize = transforms.Resize((512, 512))
img_resize = trans_resize(img)
img_resize = trans_totensor(img_resize)
writer.add_image("Resize", img_resize, 0)
print(img_resize)

#Compose - resize -2

trans_resize_2 = transforms.Resize(512)
trans_compose = transforms.Compose([trans_resize_2, trans_totensor])
img_resize_2 = trans_compose(img)
writer.add_image("Resize2", img_resize_2, 1)

#RandomCrop

trans_random = transforms.RandomCrop(512)
trans_compose_2 = transforms.Compose([trans_random, trans_totensor])
for i in range(10):
    img_crop = trans_compose_2(img)
    writer.add_image("RandomCrop", img_crop, i)



writer.close()

总结:

PyTorch深度学习快速入门学习笔记_第12张图片

P14. torchvision中的数据集使用

import torchvision
from torch.utils.tensorboard import SummaryWriter

dataset_transform = torchvision.transforms.Compose([
    torchvision.transforms.ToTensor()
])


train_set = torchvision.datasets.CIFAR10(root="./dataset", train=True, transform=dataset_transform, download=True)
test_set = torchvision.datasets.CIFAR10(root="./dataset", train=False, transform=dataset_transform, download=True)

# print(test_set[0])
#
# img, target = test_set[0]
# print(img)
# print(target)
# print(test_set.classes[target])
# img.show()

# print(test_set[0])

writer = SummaryWriter("P14" )

for i in range(10):
    img, target = test_set[i]
    writer.add_image("test_set", img, i)

writer.close()

假如下载速度太慢,可以用迅雷下载,下载网址如下图
在这里插入图片描述
从上图跳转到下图,向上翻可以找到url,这个就是网址。
PyTorch深度学习快速入门学习笔记_第13张图片

下载好后。
新创一个如下图的文件夹,将下载的压缩包直接复制到该文件下运行即可。
在这里插入图片描述
提取压缩包:
在这里插入图片描述
它会自动减压文件,如下图。
在这里插入图片描述

P15. DataLoader 的使用

import torchvision
# 准备的测试数据集
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset_transform = torchvision.transforms.Compose([
    torchvision.transforms.ToTensor()
])
test_data = torchvision.datasets.CIFAR10("./dataset", train=False, transform=dataset_transform )

test_loader = DataLoader(dataset=test_data, batch_size=64, shuffle=True, num_workers=0, drop_last=True)
# dataset:数据来源 batch_size:一组的数量, shuffle:是否打乱顺序取值  drop_last:是否删除最后数量不够的一组

#测试数据集中的第一张图片及target
img, target = test_data[0]
print(img.shape)
print(target)

writer = SummaryWriter("dataloder")
step = 0
for data in test_loader:
    imgs, targets = data
    # print(imgs.shape)
    # print(targets)
    # writer.add_images("test_data", imgs, step)
    writer.add_images("test_data_drop_last", imgs, step)
    step = step + 1

writer.close()

PyTorch深度学习快速入门学习笔记_第14张图片

P16.神经网络的基本骨架-nn.Module的使用

import torch
from torch import nn


class MyModule(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, input):#定义卷积网络
        output = input + 1
        return  output

module = MyModule()

x = torch.tensor(1.0)
output = module(x)
print(output) # tensor(2.)

P17. 卷积操作

计算规则:
在这里插入图片描述

参数设置:
PyTorch深度学习快速入门学习笔记_第15张图片


import torch
import torch.nn.functional as F
input = torch.tensor([[1, 2, 0, 3, 1],
                      [0, 1, 2, 3, 1],
                      [1, 2, 1, 0, 0],
                      [5, 2, 3, 1, 1],
                      [2, 1, 0, 1, 1]])

kernel = torch.tensor([[1, 2, 1],
                       [0, 1, 0],
                       [2, 1, 0]])


print(input.shape) #torch.Size([5, 5])
print(kernel.shape) #torch.Size([3, 3])

# 尺寸变换
input = torch.reshape(input, (1, 1, 5, 5)) #改成卷积可以接受的形式
kernel = torch.reshape(kernel, (1, 1, 3, 3))

print(input.shape) #torch.Size([1, 1, 5, 5])
print(kernel.shape) #torch.Size([1, 1, 3, 3])

output = F.conv2d(input, kernel, stride=1) #stride:步长

print(output)

output2 = F.conv2d(input, kernel, stride=2) #stride:步长

print(output2)

output3 = F.conv2d(input, kernel, stride=1, padding=1) #padding:补零的长度

print(output3)

P18. 卷积层

PyTorch深度学习快速入门学习笔记_第16张图片


import torch
import torchvision
from torch import nn
from torch.nn import Conv2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset = torchvision.datasets.CIFAR10("dataset", train=False, transform=torchvision.transforms.ToTensor(), download=True)

dataloder = DataLoader(dataset, batch_size=64)


class MyModule(nn.Module):
    def __init__(self):
        super(MyModule, self).__init__()
        self.conv1 = Conv2d(in_channels=3, out_channels=6, kernel_size=3, stride=1, padding=0)

    def forward(self, x):
        x = self.conv1(x)
        return x


module = MyModule()

print(module)

writer = SummaryWriter("P18_logs")
step = 0
for data in dataloder:
    imgs, target = data
    output = module(imgs)
    print(imgs.shape) #torch.Size([64, 3, 32, 32])
    print(output.shape) #torch.Size([64, 6, 30, 30])

    writer.add_images("input", imgs, step)
    output = torch.reshape(output, (-1, 3, 30, 30))
    writer.add_images("output", output, step)
    step = step + 1

PyTorch深度学习快速入门学习笔记_第17张图片

P19.神经网络—最大池化使用

PyTorch深度学习快速入门学习笔记_第18张图片

PyTorch深度学习快速入门学习笔记_第19张图片
PyTorch深度学习快速入门学习笔记_第20张图片



import torch
from torch import nn
from torch.nn import MaxPool2d

input = torch.tensor([[1, 2, 0, 3, 1],
                      [0, 1, 2, 3, 1],
                      [1, 2, 1, 0, 0],
                      [5, 2, 3, 1, 1],
                      [2, 1, 0, 1, 1]], dtype=torch.float32)

input = torch.reshape(input, (-1, 1, 5, 5))
print(input.shape) #torch.Size([1, 1, 5, 5])

class MyModule(nn.Module):
    def __init__(self):
        super(MyModule, self).__init__()
        self.maxpool1 = MaxPool2d(kernel_size=3, ceil_mode=True)

    def forward(self, input):
        output = self.maxpool1(input)
        return output


module = MyModule()
output = module(input)
print(output)

PyTorch深度学习快速入门学习笔记_第21张图片



import torch
import torchvision
from torch import nn
from torch.nn import MaxPool2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

input = torch.tensor([[1, 2, 0, 3, 1],
                      [0, 1, 2, 3, 1],
                      [1, 2, 1, 0, 0],
                      [5, 2, 3, 1, 1],
                      [2, 1, 0, 1, 1]], dtype=torch.float32)

input = torch.reshape(input, (-1, 1, 5, 5))
print(input.shape) #torch.Size([1, 1, 5, 5])

dataset = torchvision.datasets.CIFAR10("dataset", train=False, transform=torchvision.transforms.ToTensor(), download=True)

dataloder = DataLoader(dataset, batch_size=64)

class MyModule(nn.Module):
    def __init__(self):
        super(MyModule, self).__init__()
        self.maxpool1 = MaxPool2d(kernel_size=3, ceil_mode=True)

    def forward(self, input):
        output = self.maxpool1(input)
        return output


module = MyModule()
output = module(input)
print(output)


writer = SummaryWriter("P19_logs")

step = 0

for data in dataloder:
    imgs, targets = data
    output = module(imgs)

    writer.add_images("input", imgs, step)
    writer.add_images("output", output, step)
    step = step + 1

writer.close()

PyTorch深度学习快速入门学习笔记_第22张图片

P20.神经网络—非线性激活

Rule

import torch
from torch import nn
from torch.nn import ReLU

input = torch.tensor([[1, -0.5],
                      [-1, 3]])

intput = torch.reshape(input, (-1, 1, 2, 2))

print(intput.shape) #torch.Size([1, 1, 2, 2])

class Module(nn.Module):
    def __init__(self):
        super(Module, self).__init__()
        self.relu1 = ReLU()

    def forward(self,input):
        output = self.relu1(input)
        return output



module = Module()
print(intput)

output = module(intput)
print(output)

PyTorch深度学习快速入门学习笔记_第23张图片

sigmoid

import torch
import torchvision
from torch import nn
from torch.nn import ReLU, Sigmoid
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset = torchvision.datasets.CIFAR10("dataset", train=False, transform=torchvision.transforms.ToTensor(), download=True)
dataloder = DataLoader(dataset, batch_size=64)


class Module(nn.Module):
    def __init__(self):
        super(Module, self).__init__()
        self.sigmoid1 = Sigmoid()

    def forward(self,input):
        output = self.sigmoid1(input)
        return output


module = Module()
writer = SummaryWriter("P20_sigmoid")
step = 0

for data in dataloder:
    imgs, targets = data
    output = module(imgs)

    writer.add_images("input", imgs, global_step=step)
    writer.add_images("output", output, global_step=step)
    step = step + 1


writer.close()

PyTorch深度学习快速入门学习笔记_第24张图片

P21. 神经网络—线性层及其他层

import torch
import torchvision
from torch import nn
from torch.nn import Linear
from torch.utils.data import DataLoader

dataset = torchvision.datasets.CIFAR10("dataset", train=False, transform=torchvision.transforms.ToTensor())

dataloader = DataLoader(dataset, batch_size=64)

class Module(nn.Module):
    def __init__(self):
        super(Module, self).__init__()
        self.linear1 = Linear(196608, 10)

    def forward(self, input):
        output = self.linear1(input)
        return output


module = Module()

for data in dataloader:
    imgs, targets = data
    print(imgs.shape) # torch.Size([64, 3, 32, 32])
    output = torch.reshape(imgs, (1, 1, 1, -1))
    print(output.shape) # torch.Size([1, 1, 1, 196608])
    output1 = module(output)
    print(output1.shape)  # torch.Size([1, 1, 1, 10])

    output = torch.flatten(imgs)
    print(output.shape) # torch.Size([196608])
    output = module(output)
    print(output.shape) #torch.Size([10])

P22. 神经网络—搭建小实战和Sequential的使用

import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.tensorboard import SummaryWriter


class MyModule(nn.Module):
    def __init__(self):
        super(MyModule, self).__init__()
        # self.conv1 = Conv2d(3, 32, 5, padding=2)#
        # self.maxpool1 = MaxPool2d(2)
        # self.conv2 = Conv2d(32, 32, 5, padding=2)#
        # self.maxpool2 = MaxPool2d(2)
        # self.conv3 = Conv2d(32, 64, 5, padding=2)
        # self.maxpool3 = MaxPool2d(2)
        # self.flatten = Flatten()
        # self.linear1 = Linear(1024, 64)
        # self.Linear2 = Linear(64, 10)

        self.model1 = Sequential(
            Conv2d(3, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)
        )


    def forward(self, x):
        # x = self.conv1(x)
        # x = self.maxpool1(x)
        # x = self.conv2(x)
        # x = self.maxpool2(x)
        # x = self.conv3(x)
        # x = self.maxpool3(x)
        # x = self.flatten(x)
        # x = self.linear1(x)
        # x = self.Linear2(x)

        x = self.model1(x)
        return x



module = MyModule()

print(module)

input = torch.ones(64, 3, 32, 32)
output = module(input)
print(output.shape)


writer = SummaryWriter("P22_logs")
writer.add_graph(module, input)
writer.close()

PyTorch深度学习快速入门学习笔记_第25张图片
PyTorch深度学习快速入门学习笔记_第26张图片

P23.损失函数与反向传播

不同的损失函数的用法

import torch
from torch.nn import L1Loss
from torch import nn
inputs = torch.tensor([1, 2, 3], dtype=torch.float32)
targets = torch.tensor([1, 2, 5], dtype=torch.float32)

inputs = torch.reshape(inputs, (1, 1, 1, 3))
targets = torch.reshape(targets, (1, 1, 1, 3))

loss = L1Loss()
res = loss(inputs, targets)
print(res) #tensor(0.6667)
loss_mse = nn.MSELoss()
res_mse = loss_mse(inputs, targets) # (0+0+2^2)/3
print(res_mse) # tensor(1.3333)



x = torch.tensor([0.1, 0.2, 0.3])
y = torch.tensor([1])
x = torch.reshape(x, [1, 3])

loss_cross = nn.CrossEntropyLoss()
res_cross = loss_cross(x, y)
print(res_cross) #tensor(1.1019)


损失函数在神经网络中的运用

import torch
import torchvision
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset = torchvision.datasets.CIFAR10("dataset", train=False, transform=torchvision.transforms.ToTensor(), download=True)

dataloader = DataLoader(dataset, batch_size=1)

class MyModule(nn.Module):
    def __init__(self):
        super(MyModule, self).__init__()

        self.model1 = Sequential(
            Conv2d(3, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)
        )


    def forward(self, x):
        x = self.model1(x)
        return x



loss = nn.CrossEntropyLoss()

module = MyModule()

for data in dataloader:
    imgs, targets = data
    outputs = module(imgs)
    # print(outputs)
    # print(targets)
    res_loss = loss(outputs, targets)
    # print(res_loss)
    res_loss.backward() #反向传播

P23.优化器

import torch
import torchvision
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset = torchvision.datasets.CIFAR10("dataset", train=False, transform=torchvision.transforms.ToTensor(), download=True)

dataloader = DataLoader(dataset, batch_size=1)

class MyModule(nn.Module):
    def __init__(self):
        super(MyModule, self).__init__()

        self.model1 = Sequential(
            Conv2d(3, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)
        )


    def forward(self, x):
        x = self.model1(x)
        return x



loss = nn.CrossEntropyLoss()

module = MyModule()
optim = torch.optim.SGD(module.parameters(), lr=0.001)

for epoch in range(10):
    running_loss = 0.0
    for data in dataloader:
        imgs, targets = data
        outputs = module(imgs)
        res_loss = loss(outputs, targets)
        optim.zero_grad() #重置
        res_loss.backward()
        optim.step() #调优
        running_loss = running_loss + res_loss
    print(running_loss)


PyTorch深度学习快速入门学习笔记_第27张图片

P25.现有网络模型的使用及修改


import torchvision
from torch import nn

train_data = torchvision.datasets.CIFAR10("dataset", train=True, download=True,
                                           transform=torchvision.transforms.ToTensor())

vgg16_false = torchvision.models.vgg16(pretrained=False)
vgg16_true = torchvision.models.vgg16(pretrained=True)

print(vgg16_true)


vgg16_true.add_module('add_linear', nn.Linear(1000, 10)) #在原有的模型上再加一层

print("-------------------------------------")
print(vgg16_true)


vgg16_true.classifier.add_module('add_linear', nn.Linear(1000, 10)) #在classifier的模型里再加一层

print("-------------------------------------")
print(vgg16_true)


print("+++++++++++++++++++++++++++++++++++++++++")

print(vgg16_false)

vgg16_false.classifier[6] = nn.Linear(4096, 10)#直接修改模型
print("+++++++++++++++++++++++++++++++++++++++++")

print(vgg16_false)

P26.网络模型的保存和读取

保存

import torch
import torchvision
from torch import nn

vgg16 = torchvision.models.vgg16(pretrained=False)#未经过训练的

### 保存方式1 : 模型结构+模型参数
torch.save(vgg16, "models/vgg16_model1.pth")


### 保存方式2 : 模型参数(官方推荐)
torch.save(vgg16.state_dict(), "models/vgg16_model2.pth")


# 陷阱
class Mymodule(nn.Module):
    def __init__(self):
        super(Mymodule, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, kernel_size=3)

    def forward(self, x):
        x = self.conv1(x)
        return x


module = Mymodule()

torch.save(module, "models/model1.pth")

读取


import torch
import torchvision

### 方式1---》加载 保存方式1
from torch import nn

model1 = torch.load("models/vgg16_model1.pth")
# print(model1)


### 方式2---》加载 保存方式2
model2 = torch.load("models/vgg16_model2.pth")
# print(model2)
vgg16 = torchvision.models.vgg16(pretrained=False)
vgg16.load_state_dict(model2)
print(vgg16)



#陷阱1: 直接读取会报错,因为当前没有自定义个那个类
# 解决方法:将这个;类写上
# class Mymodule(nn.Module):
#     def __init__(self):
#         super(Mymodule, self).__init__()
#         self.conv1 = nn.Conv2d(3, 64, kernel_size=3)
#
#     def forward(self, x):
#         x = self.conv1(x)
#         return x

# 解决方法2 引入
from P26_model_save import *

model = torch.load("models/model1.pth")

print(model)

P27.完整的模型训练套路


# 1.准备数据集

import torch
import torchvision
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

from P27_model import *

train_data = torchvision.datasets.CIFAR10("dataset", train=True, transform=torchvision.transforms.ToTensor(), download=True)

test_data = torchvision.datasets.CIFAR10("dataset", train=False, transform=torchvision.transforms.ToTensor(), download=True)



# length 长度
train_data_size = len(train_data)
test_data_size = len(test_data)

print("训练数据集的长度为:{}".format(train_data_size))
print("训练数据集的长度为:{}".format(test_data_size))


#2. 利用 DataLoader 来加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)

# 搭建神经网络

# class Mymodule(nn.Module):
#     def __init__(self):
#         super(Mymodule, self).__init__()
#         self.model = nn.Sequential(
#             nn.Conv2d(3, 32, 5, 1, 2),
#             nn.MaxPool2d(2),
#             nn.Conv2d(32, 32, 5, 1, 2),
#             nn.MaxPool2d(2),
#             nn.Conv2d(32, 64, 5, 1, 2),
#             nn.MaxPool2d(2),
#             nn.Flatten(),
#             nn.Linear(64*4*4, 64),
#             nn.Linear(64, 10)
#
#
#         )
#
#     def forward(self, x):
#         x = self.model(x)
#         return x

### model另外写再引用 网络模型

module = Mymodule()

#3. 损失函数

loss_fn = nn.CrossEntropyLoss()

#4. 优化器
### learning_rate = 0.01
### 1e-2 = 1* 10^(-2) =0.01
learning_rate = 1e-2

optimizer = torch.optim.SGD(module.parameters(), lr=learning_rate)


#5. 设置训练网络的一些参数
## 记录训练的次数
total_train_step = 0

### 记录测试的次数
total_test_step = 0

### 记录训练的轮数
epoch = 10

### 添加tensorboard

writer = SummaryWriter("P27_logs")

for i in range(epoch):
    print("-----------第{}轮训练开始-----------".format(i+1))

    # 6.训练步骤开始
    module.train()

    for data in train_dataloader:
        imgs, targets = data
        output = module(imgs)
        loss = loss_fn(output, targets)

        # 优化器优化模型
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        total_train_step = total_train_step + 1
        if total_train_step % 100 == 0:
            print("训练次数: {}, loss: {}".format(total_train_step, loss.item()))
            writer.add_scalar("train_loss", loss.item(), total_train_step)


    # 7.测试步骤开始
    module.eval()
    total_test_loss = 0
    ### 整体正确的个数
    total_accuracy = 0
    with torch.no_grad():
        for data in test_dataloader:
            imgs, targets = data
            outputs = module(imgs)
            loss = loss_fn(outputs, targets)

            total_test_loss = total_test_loss + loss.item()
            accuracy = (outputs.argmax(1) == targets).sum()
            total_accuracy = total_accuracy + accuracy

    print("整体测试集上的Loss:{}".format(total_test_loss))
    print("整体测试集上的正确率:{}".format(total_accuracy/test_data_size))
    writer.add_scalar("test_loss", total_test_loss, total_test_step)
    writer.add_scalar("test_accuracy", total_accuracy/test_data_size, total_test_step)
    total_test_step = total_test_step + 1


    torch.save(module,"models/model_{}.pth".format(i))
    # torch.save(module.state_dict(), "models/model_{}.pth".format(i))
    print("模型已保存")

writer.close()

P30.利用GPU训练1


# 1.准备数据集

import torch
import torchvision
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import time

train_data = torchvision.datasets.CIFAR10("dataset", train=True, transform=torchvision.transforms.ToTensor(), download=True)

test_data = torchvision.datasets.CIFAR10("dataset", train=False, transform=torchvision.transforms.ToTensor(), download=True)



# length 长度
train_data_size = len(train_data)
test_data_size = len(test_data)

print("训练数据集的长度为:{}".format(train_data_size))
print("训练数据集的长度为:{}".format(test_data_size))


#2. 利用 DataLoader 来加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)

# 搭建神经网络

class Mymodule(nn.Module):
    def __init__(self):
        super(Mymodule, self).__init__()
        self.model = nn.Sequential(
            nn.Conv2d(3, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(64*4*4, 64),
            nn.Linear(64, 10)


        )

    def forward(self, x):
        x = self.model(x)
        return x



module = Mymodule()

##### 使用GPU
if torch.cuda.is_available():
    module = module.cuda()

#3. 损失函数

loss_fn = nn.CrossEntropyLoss()

#### 使用GPU
if torch.cuda.is_available():
    loss_fn = loss_fn.cuda()

#4. 优化器
### learning_rate = 0.01
### 1e-2 = 1* 10^(-2) =0.01
learning_rate = 1e-2

optimizer = torch.optim.SGD(module.parameters(), lr=learning_rate)


#5. 设置训练网络的一些参数
## 记录训练的次数
total_train_step = 0

### 记录测试的次数
total_test_step = 0

### 记录训练的轮数
epoch = 10

### 添加tensorboard
writer = SummaryWriter("P27_logs")

start_time = time.time()

for i in range(epoch):
    print("-----------第{}轮训练开始-----------".format(i+1))

    # 6.训练步骤开始
    module.train()

    for data in train_dataloader:
        imgs, targets = data
        #### 使用GPU
        if torch.cuda.is_available():
            imgs = imgs.cuda()
            targets = targets.cuda()
        output = module(imgs)
        loss = loss_fn(output, targets)

        # 优化器优化模型
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        total_train_step = total_train_step + 1
        if total_train_step % 100 == 0:
            end_time = time.time()
            print("运行时间{}".format(end_time-start_time))
            print("训练次数: {}, loss: {}".format(total_train_step, loss.item()))
            writer.add_scalar("train_loss", loss.item(), total_train_step)


    # 7.测试步骤开始
    module.eval()
    total_test_loss = 0
    ### 整体正确的个数
    total_accuracy = 0
    with torch.no_grad():
        for data in test_dataloader:
            imgs, targets = data
            #### 使用GPU
            if torch.cuda.is_available():
                imgs = imgs.cuda()
                targets = targets.cuda()
            outputs = module(imgs)
            loss = loss_fn(outputs, targets)

            total_test_loss = total_test_loss + loss.item()
            accuracy = (outputs.argmax(1) == targets).sum()
            total_accuracy = total_accuracy + accuracy

    print("整体测试集上的Loss:{}".format(total_test_loss))
    print("整体测试集上的正确率:{}".format(total_accuracy/test_data_size))
    writer.add_scalar("test_loss", total_test_loss, total_test_step)
    writer.add_scalar("test_accuracy", total_accuracy/test_data_size, total_test_step)
    total_test_step = total_test_step + 1


    torch.save(module,"models/model_{}.pth".format(i))
    # torch.save(module.state_dict(), "models/model_{}.pth".format(i))
    print("模型已保存")

writer.close()

P31.利用GPU训练2


# 1.准备数据集

import torch
import torchvision
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import time

# 定义训练的设备
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

train_data = torchvision.datasets.CIFAR10("dataset", train=True, transform=torchvision.transforms.ToTensor(), download=True)

test_data = torchvision.datasets.CIFAR10("dataset", train=False, transform=torchvision.transforms.ToTensor(), download=True)



# length 长度
train_data_size = len(train_data)
test_data_size = len(test_data)

print("训练数据集的长度为:{}".format(train_data_size))
print("训练数据集的长度为:{}".format(test_data_size))


#2. 利用 DataLoader 来加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)

# 搭建神经网络

class Mymodule(nn.Module):
    def __init__(self):
        super(Mymodule, self).__init__()
        self.model = nn.Sequential(
            nn.Conv2d(3, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(64*4*4, 64),
            nn.Linear(64, 10)


        )

    def forward(self, x):
        x = self.model(x)
        return x



module = Mymodule()

##### 使用GPU
module = module.to(device)

#3. 损失函数

loss_fn = nn.CrossEntropyLoss()

#### 使用GPU
loss_fn = loss_fn.to(device)

#4. 优化器
### learning_rate = 0.01
### 1e-2 = 1* 10^(-2) =0.01
learning_rate = 1e-2

optimizer = torch.optim.SGD(module.parameters(), lr=learning_rate)


#5. 设置训练网络的一些参数
## 记录训练的次数
total_train_step = 0

### 记录测试的次数
total_test_step = 0

### 记录训练的轮数
epoch = 10

### 添加tensorboard
writer = SummaryWriter("P27_logs")

start_time = time.time()

for i in range(epoch):
    print("-----------第{}轮训练开始-----------".format(i+1))

    # 6.训练步骤开始
    module.train()

    for data in train_dataloader:
        imgs, targets = data
        #### 使用GPU

        imgs = imgs.to(device)
        targets = targets.to(device)
        output = module(imgs)
        loss = loss_fn(output, targets)

        # 优化器优化模型
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        total_train_step = total_train_step + 1
        if total_train_step % 100 == 0:
            end_time = time.time()
            print("运行时间{}".format(end_time-start_time))
            print("训练次数: {}, loss: {}".format(total_train_step, loss.item()))
            writer.add_scalar("train_loss", loss.item(), total_train_step)


    # 7.测试步骤开始
    module.eval()
    total_test_loss = 0
    ### 整体正确的个数
    total_accuracy = 0
    with torch.no_grad():
        for data in test_dataloader:
            imgs, targets = data
            #### 使用GPU
            imgs = imgs.to(device)
            targets = targets.to(device)
            outputs = module(imgs)
            loss = loss_fn(outputs, targets)

            total_test_loss = total_test_loss + loss.item()
            accuracy = (outputs.argmax(1) == targets).sum()
            total_accuracy = total_accuracy + accuracy

    print("整体测试集上的Loss:{}".format(total_test_loss))
    print("整体测试集上的正确率:{}".format(total_accuracy/test_data_size))
    writer.add_scalar("test_loss", total_test_loss, total_test_step)
    writer.add_scalar("test_accuracy", total_accuracy/test_data_size, total_test_step)
    total_test_step = total_test_step + 1


    torch.save(module,"models/model_{}.pth".format(i))
    # torch.save(module.state_dict(), "models/model_{}.pth".format(i))
    print("模型已保存")

writer.close()

P32.完整的模型验证套路

import torch
import torchvision
from PIL import Image
from torch import nn

# image_path ="E:\PyCharm_Demo\learn_pytorch\images\dog.png"
image_path =r"E:\PyCharm_Demo\learn_pytorch\images\airplane.png"

image = Image.open(image_path)
print(image)
image = image.convert('RGB')#转换通道数

transform = torchvision.transforms.Compose([torchvision.transforms.Resize((32, 32)),
                                            torchvision.transforms.ToTensor()])


image = transform(image)
print(image.shape)

class Mymodule(nn.Module):
    def __init__(self):
        super(Mymodule, self).__init__()
        self.model = nn.Sequential(
            nn.Conv2d(3, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(64*4*4, 64),
            nn.Linear(64, 10)


        )

    def forward(self, x):
        x = self.model(x)
        return x

model1 = torch.load("E:\PyCharm_Demo\learn_pytorch\models\model_9.pth", map_location=torch.device('cpu'))#模型是在cuda上训练的,现在用cpu运行 需要更改map_location参数



print(model1)
image = torch.reshape(image, (1, 3, 32, 32))


model1.eval()
with torch.no_grad():
    output = model1(image)
print(output)

print(output.argmax(1))

你可能感兴趣的:(深度学习,pytorch,神经网络,深度学习)