多目标条件下矿山充填材料配比优化C++实现

目录

一、背景

二、C++代码

三、结果


一、背景

为进一步实现了矿山的高效开采,保证采矿作业的安全,降低充填成本是某金矿提高经济效益的重要途径。矿山开采二步骤对采场充填体强度的要求为7d达到0.3 MPa,28d达到0.5 MPa,56d达到0.8 MPa。其中7d、28d、56d的单轴抗压强度分别为:

7d单轴抗压强度:

Y1=-29.32637+0.858937X1+0.204500X2+0.046460X3-0.002600X1X2-0.000620X1X3-0.000784X2X3-0.006344X12-0.000545X22+0.001053X32(Adjusted R2= 0.9844)

28d单轴抗压强度:

Y2=-18.18050+0.665938X1+0.106150X2-0.454540X3-0.002075X1X2+0.005520X1X3+0.000552X2X3-0.005563X12-(3.53492E-17) X22+ 0.004192X32(Adjusted R2= 0.9545)

56d单轴抗压强度:

Y3=-35.55125+1.07144X1+0.252775X2-0.161840X3-0.003400X1X2 + 0.002780X1X3-0.001112X2X3-0.008125X12-0.000440X22+0.002259X32(Adjusted R2=0.9801)

采用多目标函数寻优方法优化料浆配比,以单位体积充填成本最低为优化目标即 min f,各材料充填成本为:矿山中和渣由全尾砂与酸性废水制作而成,加工费为1.2元/t;废石破碎加工价格为17元/t;水泥的价格为380元/t;工业用水的价格为1.6元/t。

现根据料浆质量分数(X1)、废石掺量(X2)和灰砂比(X3) 分别计算出1 m3充填料浆中和渣的质量Ma、废石质量Ms、水泥质量Mj和水的质量Mw,以充填体强度为约束条件,即Y1≥0.3 MPa;Y2≥0.5 MPa;Y3≥0.8 MPa,建立优化模型下式所示

多目标条件下矿山充填材料配比优化C++实现_第1张图片

二、C++代码

#include

using namespace std;

void linspace(double start,double end,int n,float* y){
	
	double interval = (end-start)/n;
	
	for(int i = 0;i < n ;i++){
		y[i] = start + interval * i;
	}
}

int main(void){
	int length = 100;
	float ma[length];
	float ms[length];
	float mj[length];
	float mw[length];
	
	float X1,X2,X3,y1,y2,y3,result;
	
	linspace(0.001,2.418,length,ma);
	linspace(0.001,2.67,length,ms);
	linspace(0.001,3,length,mj);
	linspace(0.001,1,length,mw);
	
	long long count = 0;
	int solveCount = 0;
	for(int i = 0;i < length;i++){
		for(int j = 0;j < length;j++){
			for(int k = 0;k < length;k++){
				for(int l = 0;l < length;l++){
					count++;
					if(ma[i]/2.418 + ms[j]/2.67 + mj[k]/3 + mw[l] - 1 < 0.01 && ma[i]/2.418 + ms[j]/2.67 + mj[k]/3 + mw[l] - 1 > -0.01){
//						cout << ma[i] << " " << ms[j] << " " << mj[k] << " " << mw[l] << endl;
						X1 = (ma[i]+ms[j]+mj[k])/(ma[i]+ms[j]+mj[k]+mw[l])*100;
	                    X2 = ms[j]/(ma[i]+ms[j])*100;
	                    X3 = mj[k]/(ma[i]+ms[j])*100;
//	                    cout << X1 << " " << X2 << " " << X3 << endl;
						if(X1 <= 60 && X1 >= 56 && X2 >=30 &&  X2 <= 40 && X3 >= 12.5 && X3 <= 25){
//						if(true){
							y1 = -29.32637+0.858937*X1+0.204500*X2+0.046460*X3-0.002600*X1*X2-0.000620*X1*X3-0.000784*X2*X3-0.006344*X1*X1-0.000545*X2*X2+0.001053*X3*X3;
	//						cout << count << " " << X1 << " " << X2 << " " << X3 << " " << y1 << endl;
							if(y1 >= 0.3){
								y2 = -18.18050+0.665938*X1+0.106150*X2-0.454540*X3-0.002075*X1*X2+0.005520*X1*X3+0.000552*X2*X3-0.005563*X1*X1-(3.53492E-17)*X2*X2+ 0.004192*X3*X3;
								if(y2 >= 0.5){
									y3=-35.55125+1.07144*X1+0.252775*X2-0.161840*X3-0.003400*X1*X2 + 0.002780*X1*X3-0.001112*X2*X3-0.008125*X1*X1-0.000440*X2*X2+0.002259*X3*X3;
									if(y3 >= 0.8){
										result = 1.2*ma[i] + 17*ms[j] + 380*mj[k] + 1.6*mw[l];
										cout << count << " " <

暴力求解:代码采用最简单的暴力求解方法,即将待求值中和渣的质量Ma、废石质量Ms、水泥质量Mj和水的质量Mw采用linspace进行创建等差数列(组合密度取决于变量length),采用循环遍历每一种组合,并判断每一种组合是否满足模型的各个优化条件,若满足则输出。

三、结果

count Ma Ms Mj Mw X1 X2 X3 f
19100665 0.46023 0.2679 0.18094 0.64036 58.6713 36.7929 24.85 74.8884
19100666 0.46023 0.2679 0.18094 0.65035 58.2954 36.7929 24.85 74.9043
19110565 0.46023 0.29459 0.15095 0.64036 58.583 39.0278 19.9981 63.9459
19110664 0.46023 0.29459 0.18094 0.63037 59.7498 39.0278 23.9713 75.3261
19110665 0.46023 0.29459 0.18094 0.64036 59.3711 39.0278 23.9713 75.3421
20090665 0.4844 0.24121 0.18094 0.64036 58.6039 33.2424 24.9363 74.4636
20090666 0.4844 0.24121 0.18094 0.65035 58.2279 33.2424 24.9363 74.4796
20100565 0.4844 0.2679 0.15095 0.64036 58.5154 35.6108 20.0651 63.5212
20100664 0.4844 0.2679 0.18094 0.63037 59.685 35.6108 24.0516 74.9014
20100665 0.4844 0.2679 0.18094 0.64036 59.306 35.6108 24.0516 74.9174
20110564 0.4844 0.29459 0.15095 0.63037 59.5997 37.8169 19.3777 63.9589
20110565 0.4844 0.29459 0.15095 0.64036 59.2205 37.8169 19.3777 63.9749
21090565 0.50857 0.24121 0.15095 0.64036 58.4476 32.1708 20.1326 63.0964
21090664 0.50857 0.24121 0.18094 0.63037 59.6199 32.1708 24.1324 74.4766
21090665 0.50857 0.24121 0.18094 0.64036 59.2408 32.1708 24.1324 74.4926
21100564 0.50857 0.2679 0.15095 0.63037 59.5343 34.5023 19.4405 63.5342
21100565 0.50857 0.2679 0.15095 0.64036 59.155 34.5023 19.4405 63.5502
22090564 0.53274 0.24121 0.15095 0.63037 59.4688 31.1661 19.5038 63.1095
22090565 0.53274 0.24121 0.15095 0.64036 59.0892 31.1661 19.5038 63.1254

你可能感兴趣的:(C/C++,c++)