pytorch保存模型
import torch.onnx
d = torch.rand(1, 3, 224, 224,dtype=torch.float,device = 'cuda')
m = model_ft
o = model_ft(d)
onnx_path = "onnx_model_name.onnx"
torch.onnx.export(m, d, onnx_path)
C++调用
#include "opencv2/dnn/dnn.hpp"
using namespace cv;
using namespace cv::dnn;
using namespace std;
void Classification_good()
{
// 装载模型,设置参数
clock_t st = clock();
string model = "C:\\Users\\Ring\\Desktop\\A_jupyter\\pytorch\\test\\onnx_model_name.onnx";
ClassificationModel dnn_model(model);
dnn_model.setPreferableBackend(DNN_BACKEND_CUDA);
dnn_model.setPreferableTarget(DNN_TARGET_CUDA);
float scale = 1.0 / 255;
int inpWidth = 224, inpHeight = 224;
Scalar mean(0, 0, 0);
dnn_model.setInputParams(scale, Size(inpWidth, inpHeight), mean, true, false);
clock_t end = clock();
cout << end - st << endl;
// 图像文件夹遍历检测
String folder = "C:\\Users\\Ring\\Desktop\\A_jupyter\\pytorch\\test\\Neu\\val\\Rs/";
vector imagePathList;
glob(folder, imagePathList);
cout << "test In C++!" << endl;
for (int i = 0; i < imagePathList.size(); i++)
{
Mat img = imread(imagePathList[i]);
resize(img, img, Size(224, 224), 0, 0, INTER_LANCZOS4);
Mat img_t = Mat::zeros(img.size(), CV_32FC1);
for (int ii = 0; ii < img.cols; ii++)
{
for (int jj = 0; jj < img.rows; jj++)
{
img_t.at(ii, jj) = img.at(ii, jj);
}
}
int classIds;
float confs;
double time1 = static_cast(getTickCount());
dnn_model.classify(img, classIds, confs); // 前向推理,classIds是类别索引,classIds=0是划痕,classIds=1是颗粒
double time2 = (static_cast(getTickCount()) - time1) / getTickFrequency();
cout << classIds << endl;
cout << "time: " << time2 << endl;
}
}
训练模型
import numpy as np
import torchvision
from torchvision import datasets, transforms, models
import torch
import matplotlib.pyplot as plt
import time
import os
import copy
print("Torchvision Version: ",torchvision.__version__)
print('pytorch Version: ',torch.__version__)
data_dir = "./Neu"
batch_size = 32
input_size = 224
all_imgs = datasets.ImageFolder(os.path.join(data_dir, "train"),
transforms.Compose([
transforms.RandomResizedCrop(input_size), #把每张图片变成resnet需要输入的维度224
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
]))
loader = torch.utils.data.DataLoader(all_imgs, batch_size=batch_size, shuffle=True, num_workers=4)
img = next(iter(loader))[0]
img[0][1].dtype
#plt展示torch的图片
unloader = transforms.ToPILImage()
plt.imshow(unloader(img[1].squeeze(0)))
data_transforms = {
"train": transforms.Compose([
transforms.RandomResizedCrop(input_size),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
#transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
"val": transforms.Compose([
transforms.Resize(input_size),
transforms.CenterCrop(input_size),
transforms.ToTensor(),
#transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}
# Create training and validation datasets
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'val']}
# Create training and validation dataloaders
dataloaders_dict = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=batch_size, shuffle=True, num_workers=4) for x in ['train', 'val']}
#把迭代器存放到字典里作为value,key是train和val,后面调用key即可。
# Detect if we have a GPU available
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
inputs, labels=next(iter(dataloaders_dict["train"])) #一个batch
print(inputs.shape)
print(labels)
for inputs, labels in dataloaders_dict["train"]:
print(labels.size()) #最后一个batch不足32
model_name = "resnet"
num_classes = 6
num_epochs = 10
feature_extract = True #只更新修改的层
def set_parameter_requires_grad(model, feature_extracting):
if feature_extracting:
for param in model.parameters():
param.requires_grad = False #提取的参数梯度不更新
#初始化model
def initialize_model(model_name, num_classes, feature_extract, use_pretrained=True):
if model_name == "resnet":
model_ft = models.resnet50(pretrained=use_pretrained)
#如果True,从imagenet上返回预训练的模型和参数
set_parameter_requires_grad(model_ft, feature_extract)#提取的参数梯度不更新
num_ftrs = model_ft.fc.in_features
#model_ft.fc是resnet的最后全连接层
#(fc): Linear(in_features=512, out_features=1000, bias=True)
#in_features 是全连接层的输入特征维度
#print(num_ftrs)
model_ft.fc = nn.Linear(num_ftrs, num_classes)
#out_features=1000 改为 num_classes=2
input_size = 224 #resnet18网络输入图片维度是224,resnet34,50,101,152也是
return model_ft, input_size
model_ft, input_size = initialize_model(model_name, num_classes, feature_extract, use_pretrained=True)
print(model_ft)
next(iter(model_ft.named_parameters()))
len(next(iter(model_ft.named_parameters())))
for name,param in model_ft.named_parameters():
print(name) #看下都有哪些参数
model_ft = model_ft.to(device)
params_to_update = model_ft.parameters() #需要更新的参数
print("Params to learn:")
if feature_extract:
params_to_update = [] #需要更新的参数存放在此
for name,param in model_ft.named_parameters():
#model_ft.named_parameters()有啥看上面cell
if param.requires_grad == True:
#这里要知道全连接层之前的层param.requires_grad == Flase
#后面加的全连接层param.requires_grad == True
params_to_update.append(param)
print("\t",name)
else: #否则,所有的参数都会更新
for name,param in model_ft.named_parameters():
if param.requires_grad == True:
print("\t",name)
# Observe that all parameters are being optimized
optimizer_ft = optim.SGD(params_to_update, lr=0.001, momentum=0.9) #定义优化器
# Setup the loss fxn
criterion = nn.CrossEntropyLoss() #定义损失函数
#训练测试合一起了
def train_model(model, dataloaders, criterion, optimizer, num_epochs=5):
since = time.time()
val_acc_history = []
best_model_wts = copy.deepcopy(model.state_dict())#深拷贝上面resnet模型参数
#.copy和.deepcopy区别看这个:https://blog.csdn.net/u011630575/article/details/78604226
best_acc = 0.
for epoch in range(num_epochs):
print("Epoch {}/{}".format(epoch, num_epochs-1))
print("-"*10)
for phase in ["train", "val"]:
running_loss = 0.
running_corrects = 0.
if phase == "train":
model.train()
else:
model.eval()
for inputs, labels in dataloaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device)
with torch.autograd.set_grad_enabled(phase=="train"):
#torch.autograd.set_grad_enabled梯度管理器,可设置为打开或关闭
#phase=="train"是True和False,双等号要注意
outputs = model(inputs)
loss = criterion(outputs, labels)
_, preds = torch.max(outputs, 1)
#返回每一行最大的数和索引,prds的位置是索引的位置
#也可以preds = outputs.argmax(dim=1)
if phase == "train":
optimizer.zero_grad()
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0) #交叉熵损失函数是平均过的
running_corrects += torch.sum(preds.view(-1) == labels.view(-1)).item()
#.view(-1)展开到一维,并自己计算
epoch_loss = running_loss / len(dataloaders[phase].dataset)
epoch_acc = running_corrects / len(dataloaders[phase].dataset)
print("{} Loss: {} Acc: {}".format(phase, epoch_loss, epoch_acc))
if phase == "val" and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
#模型变好,就拷贝更新后的模型参数
if phase == "val":
val_acc_history.append(epoch_acc) #记录每个epoch验证集的准确率
print()
time_elapsed = time.time() - since
print("Training compete in {}m {}s".format(time_elapsed // 60, time_elapsed % 60))
print("Best val Acc: {}".format(best_acc))
model.load_state_dict(best_model_wts) #把最新的参数复制到model中
return model, val_acc_history
# Train and evaluate
model_ft, ohist = train_model(model_ft, dataloaders_dict, criterion, optimizer_ft, num_epochs=num_epochs)
# Initialize the non-pretrained version of the model used for this run 初始化用于此运行的模型的未预训练版本
scratch_model,_ = initialize_model(model_name,
num_classes,
feature_extract=False, #所有参数都训练
use_pretrained=False)# 不要imagenet的参数
scratch_model = scratch_model.to(device)
scratch_optimizer = optim.SGD(scratch_model.parameters(),
lr=0.001, momentum=0.9)
scratch_criterion = nn.CrossEntropyLoss()
_,scratch_hist = train_model(scratch_model,
dataloaders_dict,
scratch_criterion,
scratch_optimizer,
num_epochs=num_epochs)
#保存模型——这个在opencv中可以被正确的读取和预测
import torch.onnx
import netron
d = torch.rand(1, 3, 224, 224,dtype=torch.float,device = 'cuda')
m = model_ft
o = model_ft(d)
onnx_path = "onnx_model_name.onnx"
torch.onnx.export(m, d, onnx_path)
netron.start(onnx_path)