JAVA基于蚁群算法路由选择可视化动态模拟(开题报告+任务书+毕业论文+外文翻译+源代码+可执行程序+答辩PPT)
摘 要
路由选择是一种基于网络层的协议,而所有流行的网络层路由选择协议都是基于以下两种典型的分布式算法之一:距离向量路由算法和链路状态路由算法。组合优化问题是人们在工程技术、科学研究和经济管理等众多领域经常遇到的问题,其中许多问题如旅行商问题、0-1背包问题、图着色问题、装箱问题等,都被证明为NP-困难问题。用确定性的优化算法求NP完全问题的最优解,其计算时间使人难以忍受或因问题的高难度而使其计算时间随问题规模的增加以指数速度延长。用近似算法如启发式算法求解得到的近似解不能保证其可行性和最优性,甚至无法知道所得解同最优解的近似程度。因而在求解大规模组合优化问题时,传统的优化算法就显得无能为力了。在过去的10多年,蚁群算法(ACO)的研究和应用取得了很大的进展,大量结果证明了算法的有效性和在某些领域的优势。蚁群算法是一种新型的模拟进化算法,
研究表明该算法具有并行性,
鲁棒性等优良性质。本文阐述了蚁群算法的原理,详细的说明了蚂蚁算法中各个功能模块,并介绍了该算法在理论和实际问题中的应用,
并对其前景进行了展望。
关键词: 蚁群算法 信息素 仿真
Abstract
Whether it is one based on Internet agreement for route not to
choose, and all Internet route that prevail choose agreement on the
basis of the following two typical distributed algorithm one of. Is
it optimize problem people in engineering , scientific research ,
economic management numerous problem that field run into often to
make up, among them a lot of question if knapsack issue , issue of
businessman in the travel industry and of TSP , pursue painted
question , case issue ,etc., proved as 6WF difficult problem. Ask
the solving optimumly of JSP complete problem with the
deterministic optimization algorithm, calculation its time make
people to be insufferable making their calculation time up to
increase , issue of scale lengthen so as to index speed because the
question is highly difficult. If heuristic algorithm is it solve
receive approximate solution can the assurance feasibility and
getting optimum their to ask with algorithm of similar toing, it is
even unable to know incomes and solve and solve optimumly to be
similar to the degree. Therefore while asking and solving and
making the question of optimizing up on a large scale, the
traditional optimization algorithm seems powerless . From vectorial
route algorithm, algorithm of route and state of chain The
researches and applications on ACO algorithm have made great
progresses in the past more than ten years. A number of results
prove the validity of the algorithm and its advantages in some
fields. ACO algorithm whether one new-type simulation evolve the
algorithm , studies have shown this algorithm has walking abreast
nature, fine nature such as being stupid and excellent. This text
has explain ant's principle of one group of algorithms, has
introduced this application in the theory and practical problem of
algorithm, and has looked forward to its prospect .
Keyword: Ant Colony Optimization algorithm Pheromone
Simulation
目 录
前言 1
第1章 绪论 2
1.1 路由选择的意义 2
1.1.1 路由选择技术的组成 2
1.1.2 路由算法设计目标 3
1.1.3 路由算法的分类 4
1.1.4 路由算法衡量的标准 4
1.2.目前常用的路由算法 5
1.2.1 最短路径算法 5
第2章 蚁群算法的基本原理 7
2.1蚂蚁算法的产生 7
2.2 蚂蚁算法的算法思想 7
2.3蚁群算法原理 8
2.4 蚁群算法的应用 12
2.4.1蚂蚁算法在电信网动态路由优化中的应用 12
2.4.2蚂蚁算法在组合优化中的应用 12
2.5 蚂蚁算法的未来发展 12
2.5.1 MMAS ( Max2Min ant system) 最大最小蚁群算法 12
2.5.2 具有变异特征的蚁群算法 12
2.5.3 自适应蚁群算法 13
2.5.4大规模集成电路综合布线 13
2.5.5电信网络路由 13
第3章 开发工具 14
3.1软件环境 14
3.2其他资料 14
3.3 Java 的简单介绍 14
3.3.1 网络时代的需要 14
3.3.2 Internet的普及 14
3.3.3 跨平台可移植性的要求 14
3.4 Java 的主要特点 15
3.4.1 简单性 15
3.4.2 安全性 15
3.4.3 面向对象性 15
3.4.4 可靠性 16
第4章 具体的功能结构 17
4.1 系统的结构总框图 17
4.2 蚂蚁算法的主要步骤 18
第5章 系统的实现 25
5.1蚁群算法的实现结果 25
第6章 算法的不足和改进 29
6.1 算法的不足 29
6.2 算法的改进 30
6.2.1信息素更新参数微调 30
6.2.2 全局调整 31
6.2.3 信息素值微调 31
6.3一种先进的蚂蚁算法——智能蚂蚁算法 31
6.3.1 取消外激素 31
6.3.2 自动调节选择最优路径的比例 32
5.6.3 选择目标城市的依据 32
6.3.4引入扰动 32
6.4 蚂蚁算法的展望 33
结束语 34
参考文献 35