【Leetcode刷题记录_C++】【图】

二分图

二分图算法也称为染色法,是一种广度优先搜索。如果可以用两种颜色对图中的节点进行着色,并且保证相邻的节点颜色不同,那么图为二分。

785. 判断二分图

存在一个 无向图 ,图中有 n 个节点。其中每个节点都有一个介于 0 到 n - 1 之间的唯一编号。给你一个二维数组 graph ,其中 graph[u] 是一个节点数组,由节点 u 的邻接节点组成。形式上,对于 graph[u] 中的每个 v ,都存在一条位于节点 u 和节点 v 之间的无向边。该无向图同时具有以下属性:

不存在自环(graph[u] 不包含 u)。
不存在平行边(graph[u] 不包含重复值)。
如果 v 在 graph[u] 内,那么 u 也应该在 graph[v] 内(该图是无向图)
这个图可能不是连通图,也就是说两个节点 u 和 v 之间可能不存在一条连通彼此的路径。

二分图 定义:如果能将一个图的节点集合分割成两个独立的子集 A 和 B ,并使图中的每一条边的两个节点一个来自 A 集合,一个来自 B 集合,就将这个图称为 二分图 。

如果图是二分图,返回 true ;否则,返回 false 。
思路:
利用队列和广度优先搜索,我们可以对未染色的节点进行染色,并且检查是否有颜色相同的相邻节点存在。用 0 表示未检查的节点,用 1 和 2 表示两种不同的颜色。
代码:

拓扑排序

拓扑排序(topological sort)是一种常见的,对有向无环图排序的算法。给定有向无环图中的N 个节点,我们把它们排序成一个线性序列;若原图中节点 i 指向节点 j,则排序结果中 i 一定在j 之前。拓扑排序的结果不是唯一的,只要满足以上条件即可。

210. 课程表 II

现在你总共有 numCourses 门课需要选,记为 0 到 numCourses - 1。给你一个数组 prerequisites ,其中 prerequisites[i] = [ai, bi] ,表示在选修课程 ai 前 必须 先选修 bi 。

例如,想要学习课程 0 ,你需要先完成课程 1 ,我们用一个匹配来表示:[0,1] 。

返回你为了学完所有课程所安排的学习顺序。可能会有多个正确的顺序,你只要返回 任意一种 就可以了。如果不可能完成所有课程,返回 一个空数组 。
思路:
遍历一遍所有节点,哈希表存度,把入度为 0的节点(即没有前置课程要求)放在队列中。在每次从队列中获得节点时,我们将该节点放在目前排序的末尾,并且把它指向的课程的入度各减 1;如果在这个过程中有课程的所有前置必修课都已修完(即入度为 0),我们把这个节点加入队列中。当队列的节点都被处理完时,说明所有的节点都已排好序(指向它的节点全部进去了)
代码:

练习

1059.从始点到终点的所有路径

给定有向图的边 edges,以及该图的始点 source 和目标终点 destination,确定从始点 source 出发的所有路径是否最终结束于目标终点 destination,即:

从始点 source 到目标终点 destination 存在至少一条路径
如果存在从始点 source 到没有出边的节点的路径,则该节点就是路径终点。
从始点source到目标终点 destination 可能路径数是有限数字

当从始点 source 出发的所有路径都可以到达目标终点 destination 时返回 true,否则返回 false。

思路:
DFS,注意不要走环路
代码:

1135.最低成本联通所有城市

想象一下你是个城市基建规划者,地图上有 N 座城市,它们按以 1 到 N 的次序编号。

给你一些可连接的选项 conections,其中每个选项 conections[i] = [city1, city2, cost] 表示将城市 city1 和城市 city2 连接所要的成本。(连接是双向的,也就是说城市 city1 和城市 city2 相连也同样意味着城市 city2 和城市 city1 相连)。

返回使得每对城市间都存在将它们连接在一起的连通路径(可能长度为 1 的)最小成本。该最小成本应该是所用全部连接代价的综合。如果根据已知条件无法完成该项任务,则请你返回 -1。

思路:
最小生成树,Kruskal算法:首先我们把所有的边按照权值先从小到大排列,接着按照顺序选取每条边,如果这条边的两个端点不属于同一集合,那么就将它们合并入集合,直到所有的点都属于同一个集合为止。
代码:

882. 细分图中的可到达结点

给你一个无向图(原始图),图中有 n 个节点,编号从 0 到 n - 1 。你决定将图中的每条边细分为一条节点链,每条边之间的新节点数各不相同。

图用由边组成的二维数组 edges 表示,其中 edges[i] = [ui, vi, cnti] 表示原始图中节点 ui 和 vi 之间存在一条边,cnti 是将边细分后的新节点总数。注意,cnti == 0 表示边不可细分。

要细分边 [ui, vi] ,需要将其替换为 (cnti + 1) 条新边,和 cnti 个新节点。新节点为 x1, x2, …, xcnti ,新边为 [ui, x1], [x1, x2], [x2, x3], …, [xcnti+1, xcnti], [xcnti, vi] 。

现在得到一个新的 细分图 ,请你计算从节点 0 出发,可以到达多少个节点?节点 是否可以到达的判断条件 为:如果节点间距离是 maxMoves 或更少,则视为可以到达;否则,不可到达。

给你原始图和 maxMoves ,返回新的细分图中从节点 0 出发 可到达的节点数 。

思路:
dijkstra算法
算出各点小于maxmoves的有多少
代码:

你可能感兴趣的:(leetcode笔记,leetcode,c++,图论)