UVa 12171 (离散化 floodfill) Sculpture

题意:

三维空间中有n个长方体组成的雕塑,求表面积和体积。

分析:

我们可以在最外边加一圈“空气”,然后求空气的连通块的体积,最后用总体积减去即是雕塑的体积。

还有一个很“严重”的问题就是5003所占的空间太大,因此需要离散化。而在计算体积和表面积的时候要用原坐标。

离散化以后的坐标分别保存在xs、ys、zs,坐标为(x, y, z)的格子代表([xs[x], ys[y], zs[z]) ~ (xs[x+1], ys[y+1], zs[z+1]) 这一个小长方体。

这个题的难度对我来说属于大概思路比较明白,但是很多代码细节处理不好那种。

把节点和相关的函数封装在一个结构体里面是个狠不错的技巧,使编码思路清晰,代码可读性也很好。

  1 #include <cstdio>

  2 #include <algorithm>

  3 #include <queue>

  4 #include <cstring>

  5 using namespace std;

  6 

  7 const int maxn = 50 + 5;

  8 const int maxc = 1000 + 1;

  9 

 10 int n, x0[maxn], y0[maxn], z0[maxn], x1[maxn], y1[maxn], z1[maxn];

 11 

 12 int nx, ny, nz;

 13 int xs[maxn*2], ys[maxn*2], zs[maxn*2];

 14 

 15 const int dx[] = {1,-1,0,0,0,0};

 16 const int dy[] = {0,0,1,-1,0,0};

 17 const int dz[] = {0,0,0,0,1,-1};

 18 int color[maxn*2][maxn*2][maxn*2];

 19 

 20 struct Cell

 21 {

 22     int x, y, z;

 23     Cell(int x=0, int y=0, int z=0):x(x), y(y), z(z) {}

 24     bool valid() const { return x >= 0 && x < nx-1 && y >= 0 && y < ny-1 && z >= 0 && z < nz-1;}

 25     bool solid() const { return color[x][y][z] == 1; }

 26     bool getVis() const { return color[x][y][z] == 2; }

 27     void setVis() const { color[x][y][z] = 2; }

 28     Cell neighbor(int dir) const

 29     { return Cell(x+dx[dir], y+dy[dir], z+dz[dir]); }

 30     int volume()

 31     { return (xs[x+1]-xs[x]) * (ys[y+1]-ys[y]) * (zs[z+1]-zs[z]); }

 32     int area(int dir)

 33     {

 34         if(dx[dir]) return (ys[y+1]-ys[y]) * (zs[z+1]-zs[z]);

 35         if(dy[dir]) return (xs[x+1]-xs[x]) * (zs[z+1]-zs[z]);

 36         return (xs[x+1]-xs[x]) * (ys[y+1]-ys[y]);

 37     }

 38 };

 39 

 40 void discrectize(int* x, int& n)

 41 {

 42     sort(x, x + n);

 43     n = unique(x, x + n) - x;

 44 }

 45 

 46 int ID(int* x, int n, int x0)

 47 {

 48     return lower_bound(x, x + n, x0) - x;

 49 }

 50 

 51 void floodfill(int& v, int& s)

 52 {

 53     v = s = 0;

 54     Cell c;

 55     c.setVis();

 56     queue<Cell> q;

 57     q.push(c);

 58     while(!q.empty())

 59     {

 60         Cell c = q.front(); q.pop();

 61         v += c.volume();

 62         for(int i = 0; i < 6; ++i)

 63         {

 64             Cell c2 = c.neighbor(i);

 65             if(!c2.valid()) continue;

 66             if(c2.solid()) s += c.area(i);

 67             else if(!c2.getVis())

 68             {

 69                 c2.setVis();

 70                 q.push(c2);

 71             }

 72         }

 73     }

 74     v = maxc*maxc*maxc - v;

 75 }

 76 

 77 int main()

 78 {

 79     //freopen("in.txt", "r", stdin);

 80     int T;

 81     scanf("%d", &T);

 82     while(T--)

 83     {

 84         memset(color, 0, sizeof(color));

 85         nx = ny = nz = 2;

 86         xs[0] = ys[0] = zs[0] = 0;

 87         xs[1] = ys[1] = zs[1] = maxc;

 88         scanf("%d", &n);

 89         for(int i = 0; i < n; ++i)

 90         {

 91             scanf("%d%d%d%d%d%d", &x0[i], &y0[i], &z0[i], &x1[i], &y1[i], &z1[i]);

 92             x1[i] += x0[i]; y1[i] += y0[i]; z1[i] += z0[i];

 93             xs[nx++] = x0[i]; xs[nx++] = x1[i];

 94             ys[ny++] = y0[i]; ys[ny++] = y1[i];

 95             zs[nz++] = z0[i]; zs[nz++] = z1[i];

 96         }

 97         discrectize(xs, nx);

 98         discrectize(ys, ny);

 99         discrectize(zs, nz);

100 

101         for(int i = 0; i < n; ++i)

102         {

103             int X1 = ID(xs, nx, x0[i]), X2 = ID(xs, nx, x1[i]);

104             int Y1 = ID(ys, ny, y0[i]), Y2 = ID(ys, ny, y1[i]);

105             int Z1 = ID(zs, nz, z0[i]), Z2 = ID(zs, nz, z1[i]);

106             for(int X = X1; X < X2; X++)

107                 for(int Y = Y1; Y < Y2; ++Y)

108                     for(int Z = Z1; Z < Z2; ++Z)

109                         color[X][Y][Z] = 1;

110         }

111 

112         int v, s;

113         floodfill(v, s);

114         printf("%d %d\n", s, v);

115     }

116 

117     return 0;

118 }
代码君

 

你可能感兴趣的:(uva)