深度学习——自定义层+读写文件(笔记)

一 自定义层

1.自定义层:①构造一个没有任何参数的自定义层

import torch
import torch.nn.functional as F
from torch import nn


class CenteredLayer(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, X):
        return X - X.mean()  # 输入x-x的均值


layer = CenteredLayer()
print(layer(torch.FloatTensor([1, 2, 3, 4, 5])))

输出:tensor([-2., -1.,  0.,  1.,  2.])

②将层作为组件合并到更复杂的模型中

net = nn.Sequential(nn.Linear(8, 128), CenteredLayer())
Y = net(torch.rand(4, 8))
print(Y.mean())

2.带参数的图层

class MyLinear(nn.Module):
    def __init__(self, in_units, units):  # in_units 输入的维度 units输出的维度
        super(MyLinear, self).__init__()
        self.weight = nn.Parameter(torch.randn(in_units,units))  # 权重随机正态分布 in_units*units
        self.bias = nn.Parameter(torch.randn(units, ))  # 偏移为0 units

        def forward(self, X):
            linear = torch.matmul(X, self.weight.data) + self.bias.data
            return F.relu(linear)


linear = MyLinear(5, 3)
print(linear.weight)

输出:

深度学习——自定义层+读写文件(笔记)_第1张图片

 二读写文件:加载和保存张量

1.读写文件,加载和保存张量

import torch
from torch import nn
from torch.nn import functional as F

# 读写文件 加载和保存张量
x = torch.arange(4)
torch.save(x, 'x-file')  # 把x存放到当前目录x-file文件里面

x2 = torch.load('x-file')  # 读取x-file文件里面的内容
print(x2)

输出:

2.存储一个列表。

 

# 存储一个张量列表,把他读回内存
y = torch.zeros(4)
torch.save([x, y], 'xy-files')  # 把[x,y]保存到list
x2, y2 = torch.load('xy-files')  # 读取list 把x2=x,y2=y
print(x2)
print(y2)

输出:

 3.存储字典

mydict = {'x': x, 'y': y}
torch.save(mydict, 'mydict')
mydict2 = torch.load('mydict')
print(mydict2)

 4.①加载和保存模型参数

class MLP(nn.Module):
    def __init__(self):
        super().__init__()
        self.hidden = nn.Linear(20, 256)
        self.output = nn.Linear(256, 10)

    def forward(self, x):
        return self.output(F.relu(self.hidden(x)))


net = MLP()
X = torch.randn(size=(2, 20))
Y = net(X)
# 将模型参数存储到mlp.params文件
torch.save(net.state_dict(), 'mlp.params')

②读取文件的参数

# 读取文件中存储的参数
clone = MLP()  # 先实例化网络,参数是随机的
clone.load_state_dict(torch.load("mlp.params"))  # 让mlp.params参数拷贝过来
print(clone.eval())

③验证

X = torch.randn(size=(2, 20))

Y = net(X)

Y_clone = clone(X)

print(Y_clone == Y)

 

你可能感兴趣的:(深度学习,python,pytorch)