pytorch入门,resnet实现猫狗分类

 训练程序,获得最佳权重,loss、acc曲线

import os
import argparse
import torch
import torch.optim as optim
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms, models
from utils import MyDataSet
from model_trans import densenet121 as creartmodel
from utils import read_train_data, read_val_data, create_lr_scheduler, get_params_groups, train_one_epoch, evaluate


def main(args):
    device = torch.device(args.device if torch.cuda.is_available() else "cpu")
    print(f"using {device} device.")

    print(args)
    print('Start Tensorboard with "tensorboard --logdir=runs", view at http://localhost:6006/')

    tb_writer = SummaryWriter()

    train_images_path, train_images_label = read_train_data(args.train_data_path)
    val_images_path, val_images_label = read_val_data(args.val_data_path)

    img_size = 224
    data_transform = {
        "train": transforms.Compose([transforms.RandomResizedCrop(img_size),
                                     transforms.RandomHorizontalFlip(),
                                     transforms.ToTensor(),
                                     transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]),
                                     # transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
        "val": transforms.Compose([transforms.Resize(256),
                                   transforms.CenterCrop(img_size),
                                   transforms.ToTensor(),
                                   transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])}
                                   # transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])}

    train_dataset = MyDataSet(images_path=train_images_path,
                              images_class=train_images_label,
                              transform=data_transform["train"])

    val_dataset = MyDataSet(images_path=val_images_path,
                            images_class=val_images_label,
                            transform=data_transform["val"])

    batch_size = args.batch_size
    nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8])  # number of workers
    print('Using {} dataloader workers every process'.format(nw))
    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=batch_size,
                                               shuffle=True,
                                               pin_memory=True,
                                               num_workers=nw,
                                               collate_fn=train_dataset.collate_fn)

    val_loader = torch.utils.data.DataLoader(val_dataset,
                                             batch_size=batch_size,
                                             shuffle=False,
                                             pin_memory=True,
                                             num_workers=nw,
                                             collate_fn=val_dataset.collate_fn)

    model = models.resnet50(num_classes=args.num_classes).to(device)
    # model = creartmodel(num_classes=args.num_classes).to(device)

    if args.RESUME == False:
        if args.weights != "":
            assert os.path.exists(args.weights), "weights file: '{}' not exist.".format(args.weights)
            # weights_dict = torch.load(args.weights, map_location=device)
            #
            # # Delete the weight of the relevant category
            # for k in list(weights_dict.keys()):
            #     if "classifier" and "denseblock4" in k:
            #         del weights_dict[k]
            # model.load_state_dict(weights_dict, strict=False)
            pretext_model = torch.load(args.weights)
            model2_dict = model.state_dict()
            state_dict = {k: v for k, v in pretext_model.items() if k in model2_dict.keys() and 'fc' not in k}
            model2_dict.update(state_dict)
            model.load_state_dict(model2_dict)

    if args.freeze_layers:
        for name, para in model.named_parameters():
            # All weights except head are frozen
            if "fc" not in name:
                para.requires_grad_(False)
            else:
                print("training {}".format(name))

    # pg = [p for p in model.parameters() if p.requires_grad]
    pg = get_params_groups(model, weight_decay=args.wd)
    optimizer = optim.AdamW(pg, lr=args.lr, weight_decay=args.wd)
    lr_scheduler = create_lr_scheduler(optimizer, len(train_loader), args.epochs,
                                       warmup=True, warmup_epochs=1)

    best_acc = 0.
    start_epoch = 0

    if args.RESUME:
        path_checkpoint = "./model_weight/checkpoint/ckpt_best_100.pth"
        print("model continue train")
        checkpoint = torch.load(path_checkpoint)
        model.load_state_dict(checkpoint['net'])
        optimizer.load_state_dict(checkpoint['optimizer'])
        start_epoch = checkpoint['epoch']
        lr_scheduler.load_state_dict(checkpoint['lr_schedule'])

    for epoch in range(start_epoch + 1, args.epochs + 1):

        # train
        train_loss, train_acc = train_one_epoch(model=model,
                                                optimizer=optimizer,
                                                data_loader=train_loader,
                                                device=device,
                                                epoch=epoch,
                                                lr_scheduler=lr_scheduler)

        # validate
        val_loss, val_acc = evaluate(model=model,
                                     data_loader=val_loader,
                                     device=device,
                                     epoch=epoch)

        # tags = ["train_loss", "train_acc", "val_loss", "val_acc", "learning_rate"]
        # tb_writer.add_scalar(tags[0], train_loss, epoch)
        # tb_writer.add_scalar(tags[1], train_acc, epoch)
        # tb_writer.add_scalar(tags[2], val_loss, epoch)
        # tb_writer.add_scalar(tags[3], val_acc, epoch)
        # tb_writer.add_scalar(tags[4], optimizer.param_groups[0]["lr"], epoch)
        tb_writer.add_scalars('loss', {'train_loss':train_loss,'val_loss':val_loss}, epoch)
        tb_writer.add_scalars('acc', {'train_acc': train_acc, 'val_acc': val_acc}, epoch)
        tb_writer.add_scalar('learning_rate',optimizer.param_groups[0]["lr"], epoch)

        if best_acc < val_acc:
            if not os.path.isdir("./model_weight"):
                os.mkdir("./model_weight")
            torch.save(model.state_dict(), "./model_weight/best_model.pth")
            print("Saved epoch{} as new best model".format(epoch))
            best_acc = val_acc

        if epoch % 10 == 0:
            print('epoch:', epoch)
            print('learning rate:', optimizer.state_dict()['param_groups'][0]['lr'])
            checkpoint = {
                "net": model.state_dict(),
                'optimizer': optimizer.state_dict(),
                "epoch": epoch,
                'lr_schedule': lr_scheduler.state_dict()
            }
            if not os.path.isdir("./model_weight/checkpoint"):
                os.mkdir("./model_weight/checkpoint")
            torch.save(checkpoint, './model_weight/checkpoint/ckpt_best_%s.pth' % (str(epoch)))

        #add loss, acc and lr into tensorboard
        print("[epoch {}] accuracy: {}".format(epoch, round(val_acc, 3)))

    total = sum([param.nelement() for param in model.parameters()])
    print("Number of parameters: %.2fM" % (total/1e6))

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--num_classes', type=int, default=2)
    parser.add_argument('--epochs', type=int, default=5)
    parser.add_argument('--batch-size', type=int, default=32)
    parser.add_argument('--lr', type=float, default=0.0001)
    parser.add_argument('--wd', type=float, default=1e-2)
    parser.add_argument('--RESUME', type=bool, default=False)

    parser.add_argument('--train_data_path', type=str, default="./data/train")
    parser.add_argument('--val_data_path', type=str, default="./data/val")

    parser.add_argument('--weights', type=str, default='pre-resnet50.pth',
                        help='initial weights path')

    parser.add_argument('--freeze-layers', type=bool, default=True)
    parser.add_argument('--device', default='cuda:0', help='device id (i.e. 0 or 0,1 or cpu)')

    opt = parser.parse_args()

    main(opt)

 

#utils.py文件

import os
import sys
import json
import pickle
import random
import math
from PIL import Image
import torch
from tqdm import tqdm
import matplotlib.pyplot as plt
from torch.utils.data import Dataset

def read_train_data(root: str):
    random.seed(0)
    assert os.path.exists(root), "dataset root: {} does not exist.".format(root)
    category = [cls for cls in os.listdir(root) if os.path.isdir(os.path.join(root, cls))]
    category.sort()
    class_indices = dict((k, v) for v, k in enumerate(category))
    json_str = json.dumps(dict((val, key) for key, val in class_indices.items()), indent=4)

    with open('class_indices.json', 'w') as json_file:
        json_file.write(json_str)

    train_images_path = []
    train_images_label = []

    supported = [".jpg", ".JPG", ".png", ".PNG"]

    for cls in category:
        cls_path = os.path.join(root, cls)
        images = [os.path.join(root, cls, i) for i in os.listdir(cls_path)
                  if os.path.splitext(i)[-1] in supported]

        image_class = class_indices[cls]

        for img_path in images:
            train_images_path.append(img_path)
            train_images_label.append(image_class)

    print("{} images for training.".format(len(train_images_path)))

    return train_images_path, train_images_label


def read_val_data(root: str):
    random.seed(0)
    assert os.path.exists(root), "dataset root: {} does not exist.".format(root)

    category = [cls for cls in os.listdir(root) if os.path.isdir(os.path.join(root, cls))]
    category.sort()
    class_indices = dict((k, v) for v, k in enumerate(category))

    val_images_path = []
    val_images_label = []

    supported = [".jpg", ".JPG", ".png", ".PNG"]

    for cls in category:
        cls_path = os.path.join(root, cls)
        images = [os.path.join(root, cls, i) for i in os.listdir(cls_path)
                  if os.path.splitext(i)[-1] in supported]
        image_class = class_indices[cls]

        for img_path in images:
            val_images_path.append(img_path)
            val_images_label.append(image_class)

    print("{} images for validation.".format(len(val_images_path)))

    return val_images_path, val_images_label

def plot_data_loader_image(data_loader):
    batch_size = data_loader.batch_size
    plot_num = min(batch_size, 4)

    json_path = './class_indices.json'
    assert os.path.exists(json_path), json_path + " does not exist."
    json_file = open(json_path, 'r')
    class_indices = json.load(json_file)

    for data in data_loader:
        images, labels = data
        for i in range(plot_num):
            # [C, H, W] -> [H, W, C]
            img = images[i].numpy().transpose(1, 2, 0)
            img = (img * [0.5, 0.5, 0.5] + [0.5, 0.5, 0.5]) * 255
            label = labels[i].item()
            plt.subplot(1, plot_num, i+1)
            plt.xlabel(class_indices[str(label)])
            plt.xticks([])
            plt.yticks([])
            plt.imshow(img.astype('uint8'))
        plt.show()

def write_pickle(list_info: list, file_name: str):
    with open(file_name, 'wb') as f:
        pickle.dump(list_info, f)

def read_pickle(file_name: str) -> list:
    with open(file_name, 'rb') as f:
        info_list = pickle.load(f)
        return info_list

def train_one_epoch(model, optimizer, data_loader, device, epoch, lr_scheduler):
    model.train()
    loss_function = torch.nn.CrossEntropyLoss()
    accu_loss = torch.zeros(1).to(device)
    accu_num = torch.zeros(1).to(device)
    optimizer.zero_grad()

    sample_num = 0
    data_loader = tqdm(data_loader, file=sys.stdout)
    for step, data in enumerate(data_loader):
        images, labels = data
        sample_num += images.shape[0]

        pred = model(images.to(device))
        pred_classes = torch.max(pred, dim=1)[1]
        accu_num += torch.eq(pred_classes, labels.to(device)).sum()

        loss = loss_function(pred, labels.to(device))
        loss.backward()
        accu_loss += loss.detach()

        data_loader.desc = "[train epoch {}] loss: {:.3f}, acc: {:.3f}, lr: {:.5f}".format(
            epoch,
            accu_loss.item() / (step + 1),
            accu_num.item() / sample_num,
            optimizer.param_groups[0]["lr"]
        )

        if not torch.isfinite(loss):
            print('WARNING: non-finite loss, ending training ', loss)
            sys.exit(1)

        optimizer.step()
        optimizer.zero_grad()
        # update lr
        lr_scheduler.step()

    return accu_loss.item() / (step + 1), accu_num.item() / sample_num

class MyDataSet(Dataset):

    def __init__(self, images_path: list, images_class: list, transform=None):
        self.images_path = images_path
        self.images_class = images_class
        self.transform = transform

    def __len__(self):
        return len(self.images_path)

    def __getitem__(self, item):
        img = Image.open(self.images_path[item])
        if img.mode != 'RGB':
            img = img.convert("RGB")
        label = self.images_class[item]

        if self.transform is not None:
            img = self.transform(img)

        return img, label

    @staticmethod
    def collate_fn(batch):
        # https://github.com/pytorch/pytorch/blob/67b7e751e6b5931a9f45274653f4f653a4e6cdf6/torch/utils/data/_utils/collate.py
        images, labels = tuple(zip(*batch))

        images = torch.stack(images, dim=0)
        labels = torch.as_tensor(labels)
        return images, labels

@torch.no_grad()
def evaluate(model, data_loader, device, epoch):
    loss_function = torch.nn.CrossEntropyLoss()

    model.eval()

    accu_num = torch.zeros(1).to(device)
    accu_loss = torch.zeros(1).to(device)

    sample_num = 0
    data_loader = tqdm(data_loader, file=sys.stdout)
    for step, data in enumerate(data_loader):
        images, labels = data
        sample_num += images.shape[0]

        pred = model(images.to(device))
        pred_classes = torch.max(pred, dim=1)[1]
        accu_num += torch.eq(pred_classes, labels.to(device)).sum()

        loss = loss_function(pred, labels.to(device))
        accu_loss += loss

        data_loader.desc = "[valid epoch {}] loss: {:.3f}, acc: {:.3f}".format(
            epoch,
            accu_loss.item() / (step + 1),
            accu_num.item() / sample_num
        )

    return accu_loss.item() / (step + 1), accu_num.item() / sample_num


def create_lr_scheduler(optimizer,
                        num_step: int,
                        epochs: int,
                        warmup=True,
                        warmup_epochs=1,
                        warmup_factor=1e-3,
                        end_factor=1e-2):
    assert num_step > 0 and epochs > 0
    if warmup is False:
        warmup_epochs = 0

    def f(x):
        if warmup is True and x <= (warmup_epochs * num_step):
            alpha = float(x) / (warmup_epochs * num_step)
            return warmup_factor * (1 - alpha) + alpha
        else:
            current_step = (x - warmup_epochs * num_step)
            cosine_steps = (epochs - warmup_epochs) * num_step
            return ((1 + math.cos(current_step * math.pi / cosine_steps)) / 2) * (1 - end_factor) + end_factor

    return torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=f)


def get_params_groups(model: torch.nn.Module, weight_decay: float = 1e-5):
    parameter_group_vars = {"decay": {"params": [], "weight_decay": weight_decay},
                            "no_decay": {"params": [], "weight_decay": 0.}}

    parameter_group_names = {"decay": {"params": [], "weight_decay": weight_decay},
                             "no_decay": {"params": [], "weight_decay": 0.}}

    for name, param in model.named_parameters():
        if not param.requires_grad:
            continue  # frozen weights

        if len(param.shape) == 1 or name.endswith(".bias"):
            group_name = "no_decay"
        else:
            group_name = "decay"

        parameter_group_vars[group_name]["params"].append(param)
        parameter_group_names[group_name]["params"].append(name)

    # print("Param groups = %s" % json.dumps(parameter_group_names, indent=2))
    return list(parameter_group_vars.values())

程序很正确,不知道为什么,结果很奇怪,我使用了kaggle猫狗数据集的20000张图片,数据集也不小,batch_size也很合理,结果欠拟合了,train的表现不如val,我用densenet也一样,不知道是什么问题

pytorch入门,resnet实现猫狗分类_第1张图片

 pytorch入门,resnet实现猫狗分类_第2张图片

 

你可能感兴趣的:(python,文档资料)