- 从RNN循环神经网络到Transformer注意力机制:解析神经网络架构的华丽蜕变
熊猫钓鱼>_>
神经网络rnntransformer
1.引言在自然语言处理和序列建模领域,神经网络架构经历了显著的演变。从早期的循环神经网络(RNN)到现代的Transformer架构,这一演变代表了深度学习方法在处理序列数据方面的重大进步。本文将深入比较这两种架构,分析它们的工作原理、优缺点,并通过实验结果展示它们在实际应用中的性能差异。2.循环神经网络(RNN)2.1基本原理循环神经网络是专门为处理序列数据而设计的神经网络架构。RNN的核心思想
- 【深度学习解惑】在实践中如何发现和修正RNN训练过程中的数值不稳定?
云博士的AI课堂
大模型技术开发与实践哈佛博后带你玩转机器学习深度学习深度学习rnn人工智能tensorflowpytorch神经网络机器学习
在实践中发现和修正RNN训练过程中的数值不稳定目录引言与背景介绍原理解释代码说明与实现应用场景与案例分析实验设计与结果分析性能分析与技术对比常见问题与解决方案创新性与差异性说明局限性与挑战未来建议和进一步研究扩展阅读与资源推荐图示与交互性内容语言风格与通俗化表达互动交流1.引言与背景介绍循环神经网络(RNN)在处理序列数据时表现出色,但训练过程中常面临梯度消失和梯度爆炸问题,导致数值不稳定。当网络
- Transformer、BERT等模型原理与应用案例
程序猿全栈の董(董翔)
人工智能热门技术领域transformerbert深度学习
Transformer、BERT等模型原理与应用案例Transformer模型原理Transformer是一种基于注意力机制的深度学习模型架构,由Vaswani等人在2017年的论文"AttentionIsAllYouNeed"中提出。与传统的循环神经网络(RNN)和卷积神经网络(CNN)不同,Transformer完全依赖自注意力机制来处理输入序列的全局依赖关系。核心组件多头自注意力机制(Mul
- PyTorch 在 Python 自然语言处理中的运用
Python编程之道
Python编程之道pythonpytorch自然语言处理ai
PyTorch在Python自然语言处理中的运用关键词:PyTorch,Python,自然语言处理,深度学习,文本分类,情感分析摘要:本文全面探讨了PyTorch在Python自然语言处理(NLP)领域的运用。首先介绍了相关背景知识,包括目的范围、预期读者等内容。接着详细阐述了核心概念,如词嵌入、循环神经网络等,并给出了相应的原理示意图和流程图。深入讲解了核心算法原理,结合Python代码进行详细
- 开源人工神经网络库(OpenANN)
deepdata_cn
人工智能神经网络
OpenANN(OpenANN,OpenArtificialNeuralNetworkLibrary)是一个开源的人工神经网络库,基于C++编写,依赖Eigen3库进行高效的矩阵运算,使用CMake进行项目构建,支持多种神经网络架构,包括前馈神经网络、卷积神经网络和循环神经网络等,适用于图像识别、自然语言处理、时间序列预测等多种场景。提供数据预处理、模型保存和加载、超参数优化等功能。支持GPU加速
- Python机器学习与深度学习:决策树、随机森林、XGBoost与LightGBM、迁移学习、循环神经网络、长短时记忆网络、时间卷积网络、自编码器、生成对抗网络、YOLO目标检测等
WangYan2022
机器学习/深度学习Python机器学习深度学习随机森林迁移学习
融合最新技术动态与实战经验,旨在系统提升以下能力:①掌握ChatGPT、DeepSeek等大语言模型在代码生成、模型调试、实验设计、论文撰写等方面的实际应用技巧②深入理解深度学习与经典机器学习算法的关联与差异,掌握其理论基础③熟练运用PyTorch实现各类深度学习模型,包括迁移学习、循环神经网络(RNN)、长短时记忆网络(LSTM)、时间卷积网络(TCN)、自编码器、生成对抗网络(GAN)、YOL
- Transformer模型架构深度讲解
Transformer是一种在自然语言处理(NLP)和深度学习中非常重要的模型架构。它首次由Vaswani等人于2017年提出,主要应用于序列到序列的任务(如机器翻译、文本生成、摘要生成等)。Transformer模型与传统的RNN(循环神经网络)和LSTM(长短时记忆网络)不同,它不依赖于时间步的顺序处理,而是完全基于“注意力机制”进行计算,这使得它在训练速度、并行化能力和长期依赖问题的处理上具
- Teacher Forcing--------一种用于序列生成任务的训练技巧
AI扶我青云志
自然语言处理人工智能
好的,我们来详细介绍一下TeacherForcing,这是一种在训练序列生成模型(如循环神经网络RNN、长短期记忆网络LSTM、门控循环单元GRU、以及后来的Transformer)时常用的重要技术。核心概念目标:训练一个模型,使其能够根据给定的输入序列(如前一个词、图像编码、时间步数据等)预测下一个输出元素(如下一个词、下一个音符、下一个时间点的值等)。这在机器翻译、文本摘要、对话生成、语音合成
- 典型的几种神经网络
Victor Zhong
AI框架神经网络人工智能深度学习
骨干网络CNN(卷积神经网络)RNN(循环神经网络)三级目录CNN(卷积神经网络)包括输入层、隐藏层、输出层:输入层一般为一张图片(w,h,d),输入层数据一般要做归一化处理;隐藏层包含特有的卷积层(卷积核有权重系数)、池化层(没有权重系数)、全连接层,还有残差块?和Inception模块?。;输出层:RNN(循环神经网络)单向的RNN示意图:三级目录
- 长短期记忆(LSTM)网络模型
凌莫凡
lstm人工智能rnn深度学习神经网络
一、概述 长短期记忆(LongShort-TermMemory,LSTM)网络是一种特殊的循环神经网络(RNN),专门设计用于解决传统RNN在处理长序列数据时面临的梯度消失/爆炸问题,能够有效捕捉长距离依赖关系。其核心在于引入记忆细胞(CellState)和门控机制(GateMechanism),通过控制信息的流动来实现对长期信息的存储与遗忘。二、模型原理 LSTM由记忆细胞和三个门控单元(遗
- 循环神经网络(RNN):序列数据处理的强大工具
LNL13
rnn人工智能深度学习
在人工智能和机器学习的广阔领域中,处理和理解序列数据一直是一个重要且具有挑战性的任务。循环神经网络(RecurrentNeuralNetwork,RNN)作为一类专门设计用于处理序列数据的神经网络,在诸多领域展现出了强大的能力。从自然语言处理中的文本生成、机器翻译,到时间序列分析中的股票价格预测、天气预测等,RNN都发挥着关键作用。本文将深入探讨RNN的工作原理、架构特点、训练方法、常见类型以及其
- 长短期记忆网络(LSTM):让神经网络拥有 “持久记忆力” 的神奇魔法
在神经网络的奇妙世界里,有一种模型仿佛拥有了“魔法”,能够记住很久以前的信息,克服了传统循环神经网络(RNN)在处理长序列数据时的“健忘症”,它就是长短期记忆网络(LongShort-TermMemoryNetwork),简称LSTM。今天,就让我们一起走进LSTM的世界,揭开它神秘的面纱。一、从RNN的“健忘症”说起循环神经网络(RNN)是一种专门为处理序列数据而设计的神经网络,它通过隐藏层的循
- 深入了解Transformer模型及其优缺点
目录前言1Transformer结构特点1.1注意力机制(Self-Attention)1.2编码器-解码器架构1.3位置编码和基于注意力的损失函数2Transformer模型优缺点分析2.1Transformer模型的优点2.2Transformer模型的缺点3应用领域结语前言在当今人工智能领域,自然语言处理的关键问题之一是解决文本理解和生成中的挑战。传统的循环神经网络虽然在处理序列数据方面取得
- LSTM(Long Short-Term Memory)模型的深度解析
AI扶我青云志
lstmrnn深度学习
在6.28号我发了一个博客《RNN(循环神经网络)与LSTM(长短期记忆网络)输出的详细对比分析》,但是我并未详细讲解LSTM,LSTM是循环神经网络中的一个模型,然而通过这篇博客给大家深度解析一下LSTM,重点关注其内部结构和参数。LSTM是为了解决标准RNN在处理长序列时出现的梯度消失/爆炸问题而设计的一种特殊循环神经网络结构。它的核心在于引入了门控机制和细胞状态,使得网络能够有选择地记住或忘
- GRU与LSTM之间的联系和区别
AI扶我青云志
机器学习人工智能深度学习
前面我们谈到RNN与LSTM之间的关系,而GRU也是循环神经网络中的一种模型,那么它与LSTM有什么区别呢?接下来我来对GRU(GatedRecurrentUnit)模型进行一次深度解析,重点关注其内部结构、参数以及与LSTM的对比。GRU是LSTM的一种流行且高效的变体,由Cho等人在2014年提出,旨在解决与LSTM相同的长期依赖问题,但通过更简化的结构和更少的参数来实现。核心思想:简化LST
- AttnRNN:参数更少,却断档碾压LSTM/GRU的新RNN
wq舞s
人工智能python深度学习deeplearningai科技pytorch
研究者与发布者为:CSDNwq舞s,知乎wqwsgithubwqws突破性进展!新型注意力RNN(AttnRNN)在长序列任务中全面超越传统RNN模型在深度学习领域,循环神经网络(RNN)及其变体GRU和LSTM长期以来一直是处理序列数据的首选架构。然而,它们在长序列任务中始终存在信息遗忘和梯度消失等问题。今天,我很高兴地宣布一种全新的RNN架构——AttnRNN,它在多个长序列基准测试中全面超越
- 回归预测 | MATLAB实现LSTM-SVR(长短期记忆神经网络-支持向量机)多输入单输出
matlab科研社
神经网络回归matlab
✅作者简介:热爱数据处理、数学建模、仿真设计、论文复现、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击主页:Matlab科研工作室个人信条:格物致知,期刊达人。内容介绍长短期记忆神经网络(LSTM)作为一种循环神经网络(RNN)的变体,擅长处理序列数据并捕捉长期依赖关系,而支持向量机(SVR)则是一种强大的回归算法,能够有效地处理高维数据并防止过拟合。将两者结合的LSTM
- CPO-CNN-GRU-Attention、CNN-GRU-Attention、CPO-CNN-GRU、CNN-GRU四模型多变量时序预测对比
Matlab科研辅导帮
cnngru人工智能
✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。个人主页:Matlab科研工作室个人信条:格物致知,求助可私信。内容介绍多变量时序预测在诸多领域扮演着至关重要的角色,例如金融、气象和工业控制等。近年来,深度学习方法在时序预测任务中取得了显著的进展。本文旨在系统地比较四种基于卷积神经网络(CNN)和循环神经网络(GRU)的不同架构,包
- RNN循环神经网络原理解读
zhishidi
ai笔记rnn人工智能深度学习
我们把循环神经网络想象成一个有记忆的助手,特别擅长处理按顺序出现的信息,比如句子、语音、股票价格、音乐旋律等。核心思想:记住过去的信息,帮助理解现在。普通神经网络的局限(没有记忆)想象一个普通的神经网络(比如用于识别图片的):输入:你给它一张图片。处理:它分析这张图片的像素。输出:告诉你图片里是“猫”还是“狗”。问题:它每次只看一个独立的输入(一张图片),输入之间没有联系。给它看一个视频(连续很多
- P25:LSTM实现糖尿病探索与预测
?Agony
lstm人工智能rnn
本文为365天深度学习训练营中的学习记录博客原作者:K同学啊一、相关技术1.LSTM基本概念LSTM(长短期记忆网络)是RNN(循环神经网络)的一种变体,它通过引入特殊的结构来解决传统RNN中的梯度消失和梯度爆炸问题,特别适合处理序列数据。结构组成:遗忘门:决定丢弃哪些信息,通过sigmoid函数输出0-1之间的值,表示保留或遗忘的程度。输入门:决定更新哪些信息,同样通过sigmoid函数控制更新
- RNN笔记
sjtu_哈基坤
LLM随笔rnn笔记人工智能
来源见此处概述RNN(RecurrentNeuralNetwork)RNN之所以称为循环神经网络,是因为一个序列的当前的输出与前面的输出也有关.具体表现是网络会对前面的信息进行记忆并且应用于当前输出的计算中.即隐藏层之间的节点也是有连接的.并且隐藏层的输入不仅包括输入层的输出还包括上一时刻隐藏层的输出.理论上RNN能对任何长度的序列进行处理,但是在实践中,为了降低复杂性,往往假设当前状态只与前面几
- 【深度学习解惑】训练RNN时如何解决梯度消失或梯度爆炸?
训练RNN时如何解决梯度消失或梯度爆炸?1.引言与背景介绍循环神经网络(RNN)是处理序列数据的核心模型,但在训练过程中面临两大挑战:梯度消失(GradientVanishing)和梯度爆炸(GradientExplosion)。梯度消失导致长距离依赖难以学习(如文本中相距50个词的关联),而梯度爆炸会造成参数剧烈震荡甚至数值溢出(NaN值)。本文系统分析问题根源并提供工程级解决方案。2.原理解释
- 自然语言处理基础知识入门(三) RNN,LSTM,GRU模型详解
这个男人是小帅
NLP自然语言知识梳理入门rnn自然语言处理lstmgru人工智能神经网络
文章目录前言一、RNN模型1.1RNN的作用1.2RNN基本结构1.3双向循环神经网络1.4深层双向循环神经网络1.5RNN的梯度爆炸和消失问题二、LSTM模型2.1LSTM和RNN的结构对比2.2LSTM模型细节三、GRU模型总结前言在上一章节中,深入探讨了Word2vec模型的两种训练策略以及创新的优化方法,从而得到了优质的词嵌入表示。不仅如此,Word2vec作为一种语言模型,也具备根据上下
- 人工智能算法工程师(中级)课程12-PyTorch神经网络之LSTM和GRU网络与代码详解1
微学AI
AI算法工程师(中级)课程自然语言处理实战人工智能神经网络算法LSTMgru
大家好,我是微学AI,今天给大家介绍一下人工智能算法工程师(中级)课程12-PyTorch神经网络之LSTM和GRU网络与代码详解。在深度学习领域,循环神经网络(RNN)因其处理序列数据的能力而备受关注。然而,传统的RNN存在梯度消失和梯度爆炸的问题,这使得它在长序列任务中的表现不尽如人意。为了解决这一问题,长短时记忆网络(LSTM)和门控循环单元(GRU)应运而生。本文将详细介绍LSTM和GRU
- RNN、LSTM、GRU详解
昔颜1121
人工智能rnnpython
RNN、LSTM、GRU详解在深度学习领域,序列数据(如语音识别、机器翻译、文本生成等)广泛应用于自然语言处理(NLP)、时间序列预测、语音和视频处理等任务中。针对序列数据,循环神经网络(RNN,RecurrentNeuralNetwork)及其改进版本——长短时记忆网络(LSTM,LongShort-TermMemory)和门控循环单元(GRU,GatedRecurrentUnit)成为处理时序
- 小白的进阶之路系列之十六----人工智能从初步到精通pytorch综合运用的讲解第九部分
金沙阳
人工智能pytorchpython
从零开始学习NLP在这个由三部分组成的系列中,你将构建并训练一个基本的字符级循环神经网络(RNN)来对单词进行分类。你将学习如何从零开始构建循环神经网络NLP的基本数据处理技术如何训练RNN以识别单词的语言来源。从零开始学自然语言处理:使用字符级RNN对名字进行分类我们将构建并训练一个基本的字符级循环神经网络(RNN)来对单词进行分类。展示了如何预处理数据以建模NLP。特别是,这些教程展示了如何以
- DCRNN模型复现报告
神经网络15044
仿真模型python算法算法网络目标检测开发语言python
DCRNN模型复现报告1.项目概述本报告将完整复现GitHub仓库https://github.com/liyaguang/DCRNN中的DiffusionConvolutionalRecurrentNeuralNetwork(DCRNN)模型。DCRNN是一种用于交通预测的深度学习模型,结合了图卷积网络和循环神经网络,能够有效处理交通网络中的时空依赖关系。1.1DCRNN模型特点扩散卷积层:将空
- 【深度学习解惑】RNN为什么适合处理序列数据?
云博士的AI课堂
大模型技术开发与实践哈佛博后带你玩转机器学习深度学习深度学习rnn人工智能
循环神经网络处理序列数据的优势:架构原理与现代演进摘要——循环神经网络(RNN)通过其固有的时序依赖捕捉能力,从根本上改变了序列建模范式。本文系统剖析RNN处理序列数据的结构优势,对比其与LSTM等现代方案的局限性,并提供PyTorch实现范例,最后探讨稀疏循环与连续时间架构等未来研究方向。1.引言:序列建模的挑战时序数据(时间序列、文本、语音)具有关键的时间依赖性——元素xtx_txt依赖于前序
- 八种常见的神经网络介绍
EdmundXjs
技术专栏神经网络人工智能深度学习
在深度学习的世界里,各种神经网络模型层出不穷,每一种都有其独特的魅力和优势。今天,以下是八种常见的神经网络模型及其特点介绍,让我们来看看它们是如何在人工智能领域大放异彩的。概述(八大神经网络)卷积神经网络(CNN):适用于图像、音频等网格数据处理。通过卷积层提取局部特征,池化层降维,广泛用于图像分类、目标检测。特点是参数共享和权值的局部连接,减少了模型复杂度。循环神经网络(RNN):擅长处理序
- 循环神经网络RNN
Xyz_Overlord
rnn深度学习人工智能
一、循环神经网络概念以及应用场景1.概念处理序列的一种神经网络计算模型。2.序列数据数据是根据时间步生成的,前后数据有关联关系,数据可以是数字、文字序列等等。3.应用场景自然语言处理(NLP)、时间序列预测、语音识别、音乐生成......4.自然语言处理概述主要是通过计算机算法来理解自然语言。NLP涵盖了从文本到语音、从语音到文本的各个方面,它涉及多种技术,包括语法分析、语义理解、情感分析、机器翻
- jdk tomcat 环境变量配置
Array_06
javajdktomcat
Win7 下如何配置java环境变量
1。准备jdk包,win7系统,tomcat安装包(均上网下载即可)
2。进行对jdk的安装,尽量为默认路径(但要记住啊!!以防以后配置用。。。)
3。分别配置高级环境变量。
电脑-->右击属性-->高级环境变量-->环境变量。
分别配置 :
path
&nbs
- Spring调SDK包报java.lang.NoSuchFieldError错误
bijian1013
javaspring
在工作中调另一个系统的SDK包,出现如下java.lang.NoSuchFieldError错误。
org.springframework.web.util.NestedServletException: Handler processing failed; nested exception is java.l
- LeetCode[位运算] - #136 数组中的单一数
Cwind
java题解位运算LeetCodeAlgorithm
原题链接:#136 Single Number
要求:
给定一个整型数组,其中除了一个元素之外,每个元素都出现两次。找出这个元素
注意:算法的时间复杂度应为O(n),最好不使用额外的内存空间
难度:中等
分析:
题目限定了线性的时间复杂度,同时不使用额外的空间,即要求只遍历数组一遍得出结果。由于异或运算 n XOR n = 0, n XOR 0 = n,故将数组中的每个元素进
- qq登陆界面开发
15700786134
qq
今天我们来开发一个qq登陆界面,首先写一个界面程序,一个界面首先是一个Frame对象,即是一个窗体。然后在这个窗体上放置其他组件。代码如下:
public class First { public void initul(){ jf=ne
- Linux的程序包管理器RPM
被触发
linux
在早期我们使用源代码的方式来安装软件时,都需要先把源程序代码编译成可执行的二进制安装程序,然后进行安装。这就意味着每次安装软件都需要经过预处理-->编译-->汇编-->链接-->生成安装文件--> 安装,这个复杂而艰辛的过程。为简化安装步骤,便于广大用户的安装部署程序,程序提供商就在特定的系统上面编译好相关程序的安装文件并进行打包,提供给大家下载,我们只需要根据自己的
- socket通信遇到EOFException
肆无忌惮_
EOFException
java.io.EOFException
at java.io.ObjectInputStream$PeekInputStream.readFully(ObjectInputStream.java:2281)
at java.io.ObjectInputStream$BlockDataInputStream.readShort(ObjectInputStream.java:
- 基于spring的web项目定时操作
知了ing
javaWeb
废话不多说,直接上代码,很简单 配置一下项目启动就行
1,web.xml
<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="h
- 树形结构的数据库表Schema设计
矮蛋蛋
schema
原文地址:
http://blog.csdn.net/MONKEY_D_MENG/article/details/6647488
程序设计过程中,我们常常用树形结构来表征某些数据的关联关系,如企业上下级部门、栏目结构、商品分类等等,通常而言,这些树状结构需要借助于数据库完成持久化。然而目前的各种基于关系的数据库,都是以二维表的形式记录存储数据信息,
- maven将jar包和源码一起打包到本地仓库
alleni123
maven
http://stackoverflow.com/questions/4031987/how-to-upload-sources-to-local-maven-repository
<project>
...
<build>
<plugins>
<plugin>
<groupI
- java IO操作 与 File 获取文件或文件夹的大小,可读,等属性!!!
百合不是茶
类 File
File是指文件和目录路径名的抽象表示形式。
1,何为文件:
标准文件(txt doc mp3...)
目录文件(文件夹)
虚拟内存文件
2,File类中有可以创建文件的 createNewFile()方法,在创建新文件的时候需要try{} catch(){}因为可能会抛出异常;也有可以判断文件是否是一个标准文件的方法isFile();这些防抖都
- Spring注入有继承关系的类(2)
bijian1013
javaspring
被注入类的父类有相应的属性,Spring可以直接注入相应的属性,如下所例:1.AClass类
package com.bijian.spring.test4;
public class AClass {
private String a;
private String b;
public String getA() {
retu
- 30岁转型期你能否成为成功人士
bijian1013
成长励志
很多人由于年轻时走了弯路,到了30岁一事无成,这样的例子大有人在。但同样也有一些人,整个职业生涯都发展得很优秀,到了30岁已经成为职场的精英阶层。由于做猎头的原因,我们接触很多30岁左右的经理人,发现他们在职业发展道路上往往有很多致命的问题。在30岁之前,他们的职业生涯表现很优秀,但从30岁到40岁这一段,很多人
- 【Velocity四】Velocity与Java互操作
bit1129
velocity
Velocity出现的目的用于简化基于MVC的web应用开发,用于替代JSP标签技术,那么Velocity如何访问Java代码.本篇继续以Velocity三http://bit1129.iteye.com/blog/2106142中的例子为基础,
POJO
package com.tom.servlets;
public
- 【Hive十一】Hive数据倾斜优化
bit1129
hive
什么是Hive数据倾斜问题
操作:join,group by,count distinct
现象:任务进度长时间维持在99%(或100%),查看任务监控页面,发现只有少量(1个或几个)reduce子任务未完成;查看未完成的子任务,可以看到本地读写数据量积累非常大,通常超过10GB可以认定为发生数据倾斜。
原因:key分布不均匀
倾斜度衡量:平均记录数超过50w且
- 在nginx中集成lua脚本:添加自定义Http头,封IP等
ronin47
nginx lua csrf
Lua是一个可以嵌入到Nginx配置文件中的动态脚本语言,从而可以在Nginx请求处理的任何阶段执行各种Lua代码。刚开始我们只是用Lua 把请求路由到后端服务器,但是它对我们架构的作用超出了我们的预期。下面就讲讲我们所做的工作。 强制搜索引擎只索引mixlr.com
Google把子域名当作完全独立的网站,我们不希望爬虫抓取子域名的页面,降低我们的Page rank。
location /{
- java-3.求子数组的最大和
bylijinnan
java
package beautyOfCoding;
public class MaxSubArraySum {
/**
* 3.求子数组的最大和
题目描述:
输入一个整形数组,数组里有正数也有负数。
数组中连续的一个或多个整数组成一个子数组,每个子数组都有一个和。
求所有子数组的和的最大值。要求时间复杂度为O(n)。
例如输入的数组为1, -2, 3, 10, -4,
- Netty源码学习-FileRegion
bylijinnan
javanetty
今天看org.jboss.netty.example.http.file.HttpStaticFileServerHandler.java
可以直接往channel里面写入一个FileRegion对象,而不需要相应的encoder:
//pipeline(没有诸如“FileRegionEncoder”的handler):
public ChannelPipeline ge
- 使用ZeroClipboard解决跨浏览器复制到剪贴板的问题
cngolon
跨浏览器复制到粘贴板Zero Clipboard
Zero Clipboard的实现原理
Zero Clipboard 利用透明的Flash让其漂浮在复制按钮之上,这样其实点击的不是按钮而是 Flash ,这样将需要的内容传入Flash,再通过Flash的复制功能把传入的内容复制到剪贴板。
Zero Clipboard的安装方法
首先需要下载 Zero Clipboard的压缩包,解压后把文件夹中两个文件:ZeroClipboard.js
- 单例模式
cuishikuan
单例模式
第一种(懒汉,线程不安全):
public class Singleton { 2 private static Singleton instance; 3 pri
- spring+websocket的使用
dalan_123
一、spring配置文件
<?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.or
- 细节问题:ZEROFILL的用法范围。
dcj3sjt126com
mysql
1、zerofill把月份中的一位数字比如1,2,3等加前导0
mysql> CREATE TABLE t1 (year YEAR(4), month INT(2) UNSIGNED ZEROFILL, -> day
- Android开发10——Activity的跳转与传值
dcj3sjt126com
Android开发
Activity跳转与传值,主要是通过Intent类,Intent的作用是激活组件和附带数据。
一、Activity跳转
方法一Intent intent = new Intent(A.this, B.class); startActivity(intent)
方法二Intent intent = new Intent();intent.setCla
- jdbc 得到表结构、主键
eksliang
jdbc 得到表结构、主键
转自博客:http://blog.csdn.net/ocean1010/article/details/7266042
假设有个con DatabaseMetaData dbmd = con.getMetaData(); rs = dbmd.getColumns(con.getCatalog(), schema, tableName, null); rs.getSt
- Android 应用程序开关GPS
gqdy365
android
要在应用程序中操作GPS开关需要权限:
<uses-permission android:name="android.permission.WRITE_SECURE_SETTINGS" />
但在配置文件中添加此权限之后会报错,无法再eclipse里面正常编译,怎么办?
1、方法一:将项目放到Android源码中编译;
2、方法二:网上有人说cl
- Windows上调试MapReduce
zhiquanliu
mapreduce
1.下载hadoop2x-eclipse-plugin https://github.com/winghc/hadoop2x-eclipse-plugin.git 把 hadoop2.6.0-eclipse-plugin.jar 放到eclipse plugin 目录中。 2.下载 hadoop2.6_x64_.zip http://dl.iteye.com/topics/download/d2b
- 如何看待一些知名博客推广软文的行为?
justjavac
博客
本文来自我在知乎上的一个回答:http://www.zhihu.com/question/23431810/answer/24588621
互联网上的两种典型心态:
当初求种像条狗,如今撸完嫌人丑
当初搜贴像条犬,如今读完嫌人软
你为啥感觉不舒服呢?
难道非得要作者把自己的劳动成果免费给你用,你才舒服?
就如同 Google 关闭了 Gooled Reader,那是
- sql优化总结
macroli
sql
为了是自己对sql优化有更好的原则性,在这里做一下总结,个人原则如有不对请多多指教。谢谢!
要知道一个简单的sql语句执行效率,就要有查看方式,一遍更好的进行优化。
一、简单的统计语句执行时间
declare @d datetime ---定义一个datetime的变量set @d=getdate() ---获取查询语句开始前的时间select user_id
- Linux Oracle中常遇到的一些问题及命令总结
超声波
oraclelinux
1.linux更改主机名
(1)#hostname oracledb 临时修改主机名
(2) vi /etc/sysconfig/network 修改hostname
(3) vi /etc/hosts 修改IP对应的主机名
2.linux重启oracle实例及监听的各种方法
(注意操作的顺序应该是先监听,后数据库实例)
&nbs
- hive函数大全及使用示例
superlxw1234
hadoophive函数
具体说明及示例参 见附件文档。
文档目录:
目录
一、关系运算: 4
1. 等值比较: = 4
2. 不等值比较: <> 4
3. 小于比较: < 4
4. 小于等于比较: <= 4
5. 大于比较: > 5
6. 大于等于比较: >= 5
7. 空值判断: IS NULL 5
- Spring 4.2新特性-使用@Order调整配置类加载顺序
wiselyman
spring 4
4.1 @Order
Spring 4.2 利用@Order控制配置类的加载顺序
4.2 演示
两个演示bean
package com.wisely.spring4_2.order;
public class Demo1Service {
}
package com.wisely.spring4_2.order;
public class