NNDL 实验三 线性回归

使用pytorch实现
2.2 线性回归
2.2.1 数据集构建
构造一个小的回归数据集:

生成 150 个带噪音的样本,其中 100 个训练样本,50 个测试样本,并打印出训练数据的可视化分布。

import torch
import math
def linear_func(x,w=1.2,b=0.5):
    y = w*x + b
    return y
def create_toy_data(func, interval, sample_num, noise = 0.0, add_outlier = False, outlier_ratio = 0.001):
    X = torch.rand(size = [sample_num]) * (interval[1]-interval[0]) + interval[0]
    y = func(X)
    epsilon = torch.normal(0,noise,y.shape)
    y = y + epsilon
    if add_outlier:     
        outlier_num = int(len(y)*outlier_ratio)
        if outlier_num != 0:
            outlier_idx = torch.randint(len(y),size = [outlier_num])
            y[outlier_idx] = y[outlier_idx] * 5
    return X, y
func = linear_func
interval = (-10, 10)
train_num = 100
test_num = 50 
noise = 2
X_train, y_train = create_toy_data(func=func, interval=interval, sample_num=train_num, noise = noise, add_outlier = False)
X_test, y_test = create_toy_data(func=func, interval=interval, sample_num=test_num, noise = noise, add_outlier = False)
X_train_large, y_train_large = create_toy_data(func=func, interval=interval, sample_num=5000, noise = noise, add_outlier = False)
X_underlying = torch.linspace(interval[0],interval[1],train_num)
y_underlying = linear_func(X_underlying)
plt.scatter(X_train, y_train, marker='*', facecolor="none", edgecolor='#e4007f', s=50, label="train data")
plt.scatter(X_test, y_test, facecolor="none", edgecolor='#f19ec2', s=50, label="test data")
plt.plot(X_underlying, y_underlying, c='#000000', label=r"underlying distribution")
plt.legend(fontsize='x-large')
plt.show()

NNDL 实验三 线性回归_第1张图片

2.2.2 模型构建

torch.manual_seed(10) 
class Linear(Op):
    def __init__(self, input_size):
        self.input_size = input_size
        self.params = {}
        self.params['w'] = torch.randn(size=[self.input_size, 1], dtype=torch.float32)
        self.params['b'] = torch.zeros(size=[1], dtype=torch.float32)

    def __call__(self, X):
        return self.forward(X)

    def forward(self, X):
        N, D = X.shape
        if self.input_size == 0:
            return torch.full(([N, 1]), self.params['b'])

        assert D == self.input_size  
        
        y_pred = torch.matmul(X, self.params['w']) + self.params['b']
        return y_pred

input_size = 3
N = 2
X = torch.randn(N, input_size)  
model = Linear(input_size)
y_pred = model(X)
print("y_pred:", y_pred)  
y_pred: tensor([[1.8529],
        [0.6011]])


2.2.3 损失函数
回归任务中常用的评估指标是均方误差

均方误差(mean-square error, MSE)是反映估计量与被估计量之间差异程度的一种度量。

def mean_squared_error(y_true, y_pred):
    assert y_true.shape[0] == y_pred.shape[0]
    error = torch.mean(torch.square(y_true - y_pred))
    return error
y_true = torch.tensor([[-0.2], [4.9]], dtype=torch.float32)
y_pred = torch.tensor([[1.3], [2.5]], dtype=torch.float32)
error = mean_squared_error(y_true=y_true, y_pred=y_pred).item()
print("error:", error)
error: 4.005000114440918

【注意:代码实现中没有除2】思考:没有除2合理么?谈谈自己的看法,写到实验报告。

后面有求导,不影响。

2.2.4 模型优化
经验风险 ( Empirical Risk ),即在训练集上的平均损失。

def optimizer_lsm(model, X, y, reg_lambda=0):
    N, D = X.shape
    x_bar_tran = torch.mean(X,0).T
    y_bar = torch.mean(y)
    x_sub = torch.subtract(X, x_bar_tran)
    if torch.all(x_sub == 0):
        model.params['b'] = y_bar
        model.params['w'] = torch.zeros([D])
        return model

    tmp = torch.inverse(torch.matmul(x_sub.T, x_sub) +
                         reg_lambda * torch.eye(D))
    w = torch.matmul(torch.matmul(tmp, x_sub.T), (y - y_bar))
    b = y_bar - torch.matmul(x_bar_tran, w)
    model.params['b'] = b
    model.params['w'] = torch.squeeze(w, -1)
    return model

思考1. 为什么省略了不影响效果?

这里的1是N维的全1向量。

思考 2.  什么是最小二乘法 ( Least Square Method , LSM )

最小二乘法是一种在误差估计、不确定度、系统辨识及预测、预报等数据处理诸多学科领域得到广泛应用的数学工具。
回答以上问题,写到实验报告。 
2.2.5 模型训练
在准备了数据、模型、损失函数和参数学习的实现之后,开始模型的训练。

在回归任务中,模型的评价指标和损失函数一致,都为均方误差。

通过上文实现的线性回归类来拟合训练数据,并输出模型在训练集上的损失。

input_size = 1
model = Linear(input_size)
model = optimizer_lsm(model,X_train.reshape([-1,1]),y_train.reshape([-1,1]))
print("w_pred:", model.params['w'].item(), "b_pred: ", model.params['b'].item())
y_train_pred = model(X_train.reshape([-1,1])).squeeze()
train_error = mean_squared_error(y_true=y_train, y_pred=y_train_pred).item()
print("train error: ", train_error)
w_pred: 1.2271720170974731 b_pred:  0.37986236810684204
train error:  3.632181406021118

2.2.6 模型评估
用训练好的模型预测一下测试集的标签,并计算在测试集上的损失。

y_test_pred = model(X_test.reshape([-1,1])).squeeze()
test_error = mean_squared_error(y_true=y_test, y_pred=y_test_pred).item()
print("test error: ",test_error)
test error:  4.306798458099365

2.2.7 样本数量 & 正则化系数
(1) 调整训练数据的样本数量,由 100 调整到 5000,观察对模型性能的影响。

(2) 调整正则化系数,观察对模型性能的影响。

2.3 多项式回归


2.3.1 数据集构建
构建训练和测试数据,其中:

训练数样本 15 个,测试样本 10 个,高斯噪声标准差为 0.1,自变量范围为 (0,1)。

from matplotlib import pyplot as plt  
import torch
import math
def sin(x):
    y = torch.sin(2 * math.pi * x)
    return y
def create_toy_data(func, interval, sample_num, noise = 0.0, add_outlier = False, outlier_ratio = 0.001):
    X = torch.rand(size = [sample_num]) * (interval[1]-interval[0]) + interval[0]
    y = func(X)
    epsilon = torch.normal(0,noise,y.shape)
    y = y + epsilon
    if add_outlier:     
        outlier_num = int(len(y)*outlier_ratio)
        if outlier_num != 0:
            outlier_idx = torch.randint(len(y),size = [outlier_num])
            y[outlier_idx] = y[outlier_idx] * 5
    return X, y
func = sin
interval = (0, 1)
train_num = 15
test_num = 10
noise = 0.5  # 0.1
X_train, y_train = create_toy_data(func=func, interval=interval, sample_num=train_num, noise=noise)
X_test, y_test = create_toy_data(func=func, interval=interval, sample_num=test_num, noise=noise)
X_underlying = torch.linspace(interval[0], interval[1], 100)
y_underlying = sin(X_underlying)
plt.rcParams['figure.figsize'] = (8.0, 6.0)
plt.scatter(X_train, y_train, facecolor="none", edgecolor='#e4007f', s=50, label="train data")
plt.scatter(X_test, y_test, facecolor="none", edgecolor="b", s=50, label="test data")
plt.plot(X_underlying, y_underlying, c='#000000', label=r"$\sin(2\pi x)$")
plt.legend(fontsize='x-large')
plt.savefig('ml-vis2.pdf')
plt.show()

NNDL 实验三 线性回归_第2张图片

2.3.2 模型构建
套用求解线性回归参数的方法来求解多项式回归参数

def polynomial_basis_function(x, degree=2):

    if degree == 0:
        # x = torch.ones(x.shape)
        # x = x.to(torch.float32)
        # return x
        return torch.ones(x.shape)
    x_tmp = x
    x_result = x_tmp
    for i in range(2, degree + 1):
        x_tmp = torch.multiply(x_tmp, x)  
        x_result = torch.concat((x_result, x_tmp), dim=-1)
    return x_result

data = [[2], [3], [4]]
X = torch.tensor(data=data)
X = X.to(torch.float32)
degree = 3
transformed_X = polynomial_basis_function(X, degree=degree)
print("转换前:", X)
print("阶数为", degree, "转换后:", transformed_X)

2.3.3 模型训练
对于多项式回归,我们可以同样使用前面线性回归中定义的LinearRegression算子、训练函数train、均方误差函数mean_squared_error。

plt.rcParams['figure.figsize'] = (12.0, 8.0)

for i, degree in enumerate([0, 1, 3, 8]):  
    model = Linear(degree)
    X_train_transformed = polynomial_basis_function(X_train.reshape([-1, 1]), degree)
    X_underlying_transformed = polynomial_basis_function(X_underlying.reshape([-1, 1]), degree)
    model = optimizer_lsm(model, X_train_transformed, y_train.reshape([-1, 1]))  
    y_underlying_pred = model(X_underlying_transformed).squeeze()
    print(model.params)
    plt.subplot(2, 2, i + 1)
    plt.scatter(X_train, y_train, facecolor="none", edgecolor='#e4007f', s=50, label="train data")
    plt.plot(X_underlying, y_underlying, c='#000000', label=r"$\sin(2\pi x)$")
    plt.plot(X_underlying, y_underlying_pred, c='#f19ec2', label="predicted function")
    plt.ylim(-2, 1.5)
    plt.annotate("M={}".format(degree), xy=(0.95, -1.4))

plt.legend(loc='lower left', fontsize='x-large')
plt.savefig('ml-vis3.pdf')
plt.show()

2.3.4 模型评估
通过均方误差来衡量训练误差、测试误差以及在没有噪音的加入下sin函数值与多项式回归值之间的误差,更加真实地反映拟合结果。多项式分布阶数从0到8进行遍历。

对于模型过拟合的情况,可以引入正则化方法,通过向误差函数中添加一个惩罚项来避免系数倾向于较大的取值。

training_errors = []
test_errors = []
distribution_errors = []


for i in range(9):
    model = Linear(i)

    X_train_transformed = polynomial_basis_function(X_train.reshape([-1, 1]), i)
    X_test_transformed = polynomial_basis_function(X_test.reshape([-1, 1]), i)
    X_underlying_transformed = polynomial_basis_function(X_underlying.reshape([-1, 1]), i)

    optimizer_lsm(model, X_train_transformed, y_train.reshape([-1, 1]))

    y_train_pred = model(X_train_transformed).squeeze()
    y_test_pred = model(X_test_transformed).squeeze()
    y_underlying_pred = model(X_underlying_transformed).squeeze()

    train_mse = mean_squared_error(y_true=y_train, y_pred=y_train_pred).item()
    training_errors.append(train_mse)

    test_mse = mean_squared_error(y_true=y_test, y_pred=y_test_pred).item()
    test_errors.append(test_mse)

y_pred=y_underlying_pred).item()


print("train errors: \n", training_errors)
print("test errors: \n", test_errors)


plt.rcParams['figure.figsize'] = (8.0, 6.0)
plt.plot(training_errors, '-.', mfc="none", mec='#e4007f', ms=10, c='#e4007f', label="Training")
plt.plot(test_errors, '--', mfc="none", mec='#f19ec2', ms=10, c='#f19ec2', label="Test")
label="Distribution")
plt.legend(fontsize='x-large')
plt.xlabel("degree")
plt.ylabel("MSE")
plt.savefig('ml-mse-error.pdf')
plt.show()

2.4 Runner类介绍
机器学习方法流程包括数据集构建、模型构建、损失函数定义、优化器、模型训练、模型评价、模型预测等环节。

为了更方便地将上述环节规范化,我们将机器学习模型的基本要素封装成一个Runner类。

除上述提到的要素外,再加上模型保存、模型加载等功能。

Runner类的成员函数定义如下:

__init__函数:实例化Runner类,需要传入模型、损失函数、优化器和评价指标等;
train函数:模型训练,指定模型训练需要的训练集和验证集;
evaluate函数:通过对训练好的模型进行评价,在验证集或测试集上查看模型训练效果;
predict函数:选取一条数据对训练好的模型进行预测;
save_model函数:模型在训练过程和训练结束后需要进行保存;
load_model函数:调用加载之前保存的模型。

class Runner(object):
    def __init__(self, model, optimizer, loss_fn, metric):
        self.model = model         
        self.optimizer = optimizer 
        self.loss_fn = loss_fn        
        self.metric = metric       
    def train(self, train_dataset, dev_dataset=None, **kwargs):
        pass
    def evaluate(self, data_set, **kwargs):
        pass
    def predict(self, x, **kwargs):
        pass
    def save_model(self, save_path):
        pass
    def load_model(self, model_path):
        pass


2.5 基于线性回归的波士顿房价预测
使用线性回归来对马萨诸塞州波士顿郊区的房屋进行预测。

实验流程主要包含如下5个步骤:

数据处理:包括数据清洗(缺失值和异常值处理)、数据集划分,以便数据可以被模型正常读取,并具有良好的泛化性;
模型构建:定义线性回归模型类;
训练配置:训练相关的一些配置,如:优化算法、评价指标等;
组装训练框架Runner:Runner用于管理模型训练和测试过程;
模型训练和测试:利用Runner进行模型训练和测试。
2.5.1 数据处理
    2.5.1.2 数据清洗

print(data.head())
print(data.isna().sum())


    2.5.1.3 数据集划分

torch.manual_seed(10)  

def train_test_split(X, y, train_percent=0.8):
    n = len(X)
    shuffled_indices = torch.randperm(n)  
    train_set_size = int(n * train_percent)
    train_indices = shuffled_indices[:train_set_size]
    test_indices = shuffled_indices[train_set_size:]

    X = X.values
    y = y.values
    X_train = X[train_indices]
    y_train = y[train_indices]
    X_test = X[test_indices]
    y_test = y[test_indices]

    return X_train, X_test, y_train, y_test

X = data.drop(['MEDV'], axis=1)
y = data['MEDV']

X_train, X_test, y_train, y_test = train_test_split(X, y)  


    2.5.1.4 特征工程

X_train = torch.tensor(X_train)
X_train = X_train.to(torch.float32)
X_test = torch.tensor(X_test)
X_train = X_train.to(torch.float32)
y_train = torch.tensor(y_train)
X_train = X_train.to(torch.float32)
y_test = torch.tensor(y_test)
X_train = X_train.to(torch.float32)
X_min = torch.min(X_train)
X_max = torch.max(X_train)
X_train = (X_train-X_min)/(X_max-X_min)
X_test = (X_test-X_min)/(X_max-X_min)
train_dataset = (X_train, y_train)
test_dataset = (X_test, y_test)


2.5.2 模型构建

input_size = 12
model=Linear(input_size)


2.5.3 完善Runner类

class Runner(object):
    def __init__(self, model, optimizer, loss_fn, metric):
        self.model = model
        self.metric = metric
        self.optimizer = optimizer

    def train(self, dataset, reg_lambda, model_dir):
        X, y = dataset
        self.optimizer(self.model, X, y, reg_lambda)

        self.save_model(model_dir)

    def evaluate(self, dataset, **kwargs):
        X, y = dataset

        y_pred = self.model(X)
        result = self.metric(y_pred, y)

        return result

    def predict(self, X, **kwargs):
        return self.model(X)

    def save_model(self, model_dir):
        if not os.path.exists(model_dir):
            os.makedirs(model_dir)

        params_saved_path = os.path.join(model_dir, 'params.pdtensor')
        torch.save(model.params, params_saved_path)

    def load_model(self, model_dir):
        params_saved_path = os.path.join(model_dir, 'params.pdtensor')
        self.model.params = torch.load(params_saved_path)

optimizer = optimizer_lsm
runner = Runner(model, optimizer=optimizer, loss_fn=None, metric=mse_loss)


2.5.4 模型训练

saved_dir = 'pythonPoject2'
runner.train(train_dataset, reg_lambda=0, model_dir=saved_dir)
columns_list = data.columns.to_list()
weights = runner.model.params['w'].tolist()
b = runner.model.params['b'].item()
for i in range(len(weights)):
    print(columns_list[i], "weight:", weights[i])

print("b:", b)


2.5.5 模型测试

runner.load_model(saved_dir)

mse = runner.evaluate(test_dataset)
print('MSE:', mse.item())


2.5.6 模型预测

runner.load_model(saved_dir)
pred = runner.predict(X_test[:1])
print("真实房价:",y_test[:1].item())
print("预测的房价:",pred.item())

你可能感兴趣的:(线性回归,机器学习,深度学习)