- 隐马尔可夫模型:语音识别系统的时序解码引擎
大千AI助手
人工智能Python#OTHER语音识别人工智能机器学习概率马尔科夫链HMM
本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!1HMM与语音识别的理论基础隐马尔可夫模型(HMM)作为一种双重随机过程的统计模型,其核心在于描述一个包含隐含状态的马尔可夫链,以及这些状态生成可观测输出的概率分布。在语音识别领域,HMM的时序建模能力与语音信号的特性形成了完美契合:隐含状态:对应语音
- 图灵完备之路(数电学习三分钟)----简易流水灯
御阳而行
数电嵌入式硬件
在电子信息中,点灯(使能)是基础的基础,而流水灯便是基础,流水灯代表着两个知识----逻辑控制与时序控制,而前几节的知识点已经可以支撑我们完成这一基础操作了。首先,流水灯代表使能需要随时间的变化而变化,所以我们需要引入上一节的延迟线,然后我们需要判断时间,所以需要引入逻辑元器件。除此之外,我们还要引入一个概念---循环依赖:由于时间是线性的,而不是周期的,所以为了监控时间,我们需要使得这一拍的时间
- Spring 大文件传输老中断?手把手教你解决问题!
小W求学之旅
springjava后端断点续传大文件上传
最近在项目里搞大文件传输功能,频繁遇到传输中断的糟心事,反复踩坑调试后终于摸索出一套解决方案!这里简单记录分享一下,附上手写代码和时序图。开发文件上传下载功能时,传输大文件就像开盲盒——要么传着传着突然中断,要么直接弹出文件大小超限的报错。其实这些问题都有迹可循,下面就结合具体场景拆解解决方案。一、传输中断的“元凶”大盘点服务器设置太“小气”:Spring默认限制请求体大小,Tomcat等容器还会
- python打卡day58@浙大疏锦行
风逸hhh
python打卡60天行动python开发语言
知识点回顾:时序建模的流程时序任务经典单变量数据集ARIMA(p,d,q)模型实战SARIMA摘要图的理解处理不平稳的2种差分n阶差分---处理趋势季节性差分---处理季节性建立一个ARIMA模型,通常遵循以下步骤:1.数据可视化:观察原始时间序列图,判断是否存在趋势或季节性。2.平稳性检验:-对原始序列进行ADF检验。-如果p值>0.05,说明序列非平稳,需要进行差分。3.确定差分次数d:-进行
- 【ICLR 2022】时序精选论文08|Pyraformer: 基于金字塔注意力机制与多尺度辨识卷积的时间序列预测模型(代码解读附源码)
OverOnEarth
时间序列预测项目实战人工智能机器学习深度学习python算法
ICLR2022PYRAFORMER:LOW-COMPLEXITYPYRAMIDALAT-TENTIONFORLONG-RANGETIMESERIESMODELINGANDFORECASTINGPyraformer要解决的问题基于时间序列数据面临的挑战:建立一个灵活但简约的模型,能够捕获不同范围的时间依赖性。时间序列通常表现为短期和长期的重复模式,将他们考虑在内是准确预测的关键。即能够获得一个同时
- CAN 总线 之七 BOSCH CAN 位时序 和 同步
ZC·Shou
CAN&USBCANBITTIMING位时序
CAN支持1kBit/s至1000kBit/s的比特率。CAN网络的每个节点都有自己的时钟发生器,通常是石英振荡器。可以为每个CAN节点单独配置比特时间的定时参数(即比特率的倒数),即使CAN节点的振荡器周期(fosc)可能不同,也产生相同的比特率。 这些振荡器的频率不是绝对稳定的,温度或电压的变化以及元件的劣化会引起微小的变化。只要变化保持在特定振荡器容差范围(df)内,CAN节点就能够通
- 架构师必须掌握的画图工具draw.io、文本绘图(PlantUML)(架构图、UML图、流程图、时序图)
架构师必须掌握的画图工具,时序图、架构图、各种UML图轻松掌握架构师必须掌握的画图工具draw.io、文本绘图(PlantUML)(架构图、UML图、流程图、时序图)背景:hi,大家好,今天,我将为大家解锁两种强大易用的画图工具,助你在架构设计之路上乘风破浪、披荆斩棘。首先是draw.io,这款在线绘图工具以其丰富的预设模板和强大的定制能力深受广大技术人群喜爱,无论是绘制复杂的系统架构图还是精巧的
- 基于Python的气象数据分析及可视化研究
气象数据作为地球系统科学的核心要素,其分析与可视化在气候研究、灾害预警、农业生产等领域具有战略性意义。本文以Python技术栈为基座,系统探讨气象数据的采集预处理、多维度分析模型及可视化表达范式,通过3000+字深度研究揭示Pandas时序处理、Xarray多维计算、Cartopy地理可视化等工具的核心方法论。内容涵盖全球再分析数据挖掘、极端天气模式识别、动态热力图构建等实战场景,并引入机器学习预
- 按月设置索引名的完整指南:Elasticsearch日期索引实践
少林码僧
elasticsearchjenkins大数据
按月设置索引名的完整指南:Elasticsearch日期索引实践在时序数据场景中,按月设置索引名(如logs-2024-01)是优化查询效率、降低管理成本的关键策略。以下是三种实现方案及详细步骤:方案一:索引模板+日期数学表达式(推荐)原理:利用ES内置的日期数学表达式动态生成索引名,无需额外工具操作步骤:创建索引模板PUT_index_template/monthly_logs{"index_p
- ReentrantLock-signal()唤醒失败原因
summerkissyou1987
java
以下是Java中signal()唤醒失败的常见原因及解决方案分析:一、核心原因锁未正确持有调用signal()的线程必须持有与Condition关联的锁,否则抛出IllegalMonitorStateException错误示例:未调用lock()直接执行condition.signal()等待线程未进入等待状态目标线程未执行await()时调用signal()会导致信号丢失时序问题:signal(
- 时序数据库 TDengine × Node-RED:连接你的“数”与“控”
数据库sql
在工业场景中,我们经常会遇到这样的需求:设备数据上来之后,既要能存、能查,还希望能实时触发告警、控制现场设备。但如果从头写程序、配接口,成本不低、周期也长。这时候,一款能低代码快速串起“采集-存储-分析-控制”全流程的工具,往往能省下不少力气。现在,时序数据库TDengine与Node-RED正式打通,二者结合可为工业IoT打造一套真正“开箱即用”的全栈式解决方案。从毫秒级数据写入,到实时查询,再
- 全国省市县分行业碳排放月度数据(2000-2023)
皮皮学姐分享-ppx
政务学习经验分享微信公众平台笔记
1688全国省市县分行业碳排放月度数据(2000-2023)数据简介今天我们分享的数据为全国省市月度分行业碳排放数据,其中包含电力行业、工业过程、工业燃烧、建筑物能源、浪费、农业、燃料能源和运输八种指标的碳排放总量,原始数据是来源于EDGAR的NC格式文件,我们对其进行数据整理,转换为各省市的月度碳排放总量的面板数据,原始数据为长时序的全球NC格式文件,但考虑到NC数据用户使用起来并不方便,皮皮侠
- Python Day58
别勉.
python机器学习python信息可视化数据分析
Task:1.时序建模的流程2.时序任务经典单变量数据集3.ARIMA(p,d,q)模型实战4.SARIMA摘要图的理解5.处理不平稳的2种差分a.n阶差分—处理趋势b.季节性差分—处理季节性建立一个ARIMA模型,通常遵循以下步骤:数据可视化:观察原始时间序列图,判断是否存在趋势或季节性。平稳性检验:对原始序列进行ADF检验。如果p值>0.05,说明序列非平稳,需要进行差分。确定差分次数d:进行
- 使用 TCollector 写入 TDengine
TDengine (老段)
TDengine生态接入tdengine大数据时序数据库运维涛思数据物联网数据库
TCollector是openTSDB的一部分,它用来采集客户端日志发送给数据库。只需要将TCollector的配置修改指向运行taosAdapter的服务器域名(或IP地址)和相应端口即可将TCollector采集的数据存在到TDengine中,可以充分利用TDengine对时序数据的高效存储查询性能和集群处理能力。前置条件要将TCollector数据写入TDengine需要以下几方面的准备工作
- 【大模型面试必备】130道大模型问题深度解析,附详细答案,非常详细收藏这一篇就够了!
大模型学习
大模型架构数据库langchain人工智能面试
Attention1、讲讲对Attention的理解?Attention机制是一种在处理时序相关问题的时候常用的技术,*主要用于处理序列数据。*核心思想:在处理序列数据时,网络应该更关注输入中的重要部分,而忽略不重要的部分,它通过学习不同部分的权重,将输入的序列中的重要部分显式地加权,从而使得模型可以更好地关注与输出有关的信息。在序列建模任务中,比如机器翻译、文本摘要、语言理解等,输入序列的不同部
- 数字ic后端设计从入门到精通9(含fusion compiler, tcl教学)setup time, hold time check lib/report详解
soulermax
单片机嵌入式硬件
checklib标准单元库中建立时间和保持时间约束的check格式用于数字IC设计中的静态时序分析(STA)。它定义了如何用表格形式表达触发器等顺序单元在不同输入信号和时钟转换速率下的建立和保持时间。(对应工艺角的lib文件)示例结构pin(D){direction:input;...timing(){related_pin:"CK";timing_type:"setup_rising";rise
- 数字IC后端流程简述
roc-ever
芯片数字ic
1.设计输入目标:接收前端设计(如RTL代码和约束文件)的输出。工具:前端设计工具(如SynopsysDesignCompiler或CadenceGenus)。步骤:确保前端设计的RTL代码经过综合并生成了门级网表(Netlist)。收集约束文件(Constraints),如时序约束(SDC文件)、功率约束等。2.综合(Synthesis)目标:将高层次的RTL代码转化为门级网表。工具:Synop
- 使用 icinga2 写入 TDengine
icinga2是一款开源主机、网络监控软件,最初由Nagios网络监控应用发展而来。目前,icinga2遵从GNUGPLv2许可协议发行。只需要将icinga2的配置修改指向taosAdapter对应的服务器和相应端口即可将icinga2采集的数据存在到TDengine中,可以充分利用TDengine对时序数据的高效存储查询性能和集群处理能力。前置条件要将icinga2数据写入TDengine需要
- AI编程实战:Cursor黑科技全解析
ithadoop
python开发语言
Cursor黑科技:AI编程实战核心技术解析2025年智能编程工具效能革命白皮书一、核心功能架构语义驱动开发基于CodeGraph技术构建跨文件语义图谱,实现类/函数级上下文感知实时生成UML时序图辅助架构设计(快捷键Ctrl+Alt+U)多模态编程#输入:"PyTorch实现ResNet50猫狗分类,带数据增强"@AI生成代码transform=transforms.Compose([trans
- AI人工智能中LSTM在视频行为识别的应用
AI人工智能中LSTM在视频行为识别的应用关键词:LSTM、视频行为识别、深度学习、时序建模、计算机视觉、神经网络、动作识别摘要:本文将深入探讨LSTM(长短期记忆网络)在视频行为识别领域的应用。我们将从基础概念出发,逐步讲解LSTM如何解决视频时序建模的挑战,分析其核心算法原理,并通过实际代码示例展示LSTM在行为识别中的具体实现。文章还将探讨当前的应用场景、工具资源以及未来发展趋势,为读者提供
- Java多线程编程中容易混淆的Thread.sleep()与Object.wait()深度解析
前言在Java多线程编程的学习和实践过程中,我发现很多初学者(包括曾经的我)经常混淆Thread.sleep()和Object.wait()这两个方法的使用场景。本文将通过代码示例、时序图和内存变化图,深入分析这两个方法的区别,并分享我在实际项目中使用它们解决线程同步问题的经验。一、基本概念对比1.Thread.sleep()//使当前线程暂停执行指定的毫秒数Thread.sleep(1000);
- FPGA设计的时序分析概要
cycf
FPGA之道fpga开发
FPGA设计的时序分析文章目录FPGA设计的时序分析时序分析的概念和必要性时序分析的分类映射后时序分析时序约束与时序分析的关系特殊情况小总结时序分析的概念和必要性时序分析,也叫静态时序分析(StaticTimingAnalysis,简称STA),它通过完整的分析方式判断IC是否能在使用者的时序环境下正常工作,为确保IC品质提供了一个很好的解决方案。也许有人会问,我的FPGA设计已经通过了功能仿真,
- 4_Flink CEP
frimiku
flink大数据云计算
FlinkCEP1、何为CEP?CEP,全称为复杂事件处理(ComplexEventProcessing),是一种用于实时监测和分析数据流的技术。CEP详细讲解:CEP是基于动态环境的事件流的分析技术,事件是状态变化(持续生成数据)的。通过分析事件间的关系,利用过滤、关联、聚合等技术,根据事件间的【时序关系和聚合关系】制定检测规则,持续地从事件流中查询出【符合规则要求】的事件序列,最终分析得到更复
- Typora用法
是小崔啊
其他编程知识typora
Typora用法文章目录Typora用法一:typora快捷键1:任务列表2:文字常用修饰3:文本语法3.1:标题层级3.2:水平分割线3.3:表情3.4:超链接3.5:插入图片3.6:代码3.7:引用3.8:表注3.9:参考链接3.10:有序无序列表3.11:表格二:typora作图1:流程图2:时序图3:状态图4:类图5:饼状图6:甘特图三:数学公式1:分数和乘法2:开根号3:上下标4:向量点
- 时序数据库IoTDB可实现的基本操作及命令汇总
时序数据说
时序数据库iotdb数据库物联网大数据开源
一、数据写入、删除与导出1.1数据写入在物联网场景下,元件产生的数据通常会自动写入。但有时,需要修改过去的数据,可以使用INSERT语句插入修改后的值,覆盖原数据。示例:INSERTINTOroot.BHSFC.Q1.W003(timestamp,speed)VALUES(1657472400000,2);1.2数据删除1.2.1SQL语句删除删除整个时间序列:DELETEFROMroot
- 数据库领域下的时序数据库并发控制
数据库管理艺术
数据库专家之路大数据AI人工智能MCP&Agent数据库时序数据库ai
时序数据库并发控制:原理、实现与最佳实践关键词:时序数据库、并发控制、MVCC、时间戳排序、乐观并发控制、分布式事务、性能优化摘要:本文深入探讨时序数据库中的并发控制机制,从基本原理到实际实现进行全面剖析。文章首先介绍时序数据库的特点和并发控制挑战,然后详细分析MVCC、时间戳排序等核心算法原理,并通过代码示例展示实现细节。接着探讨分布式环境下的特殊考量,提供性能优化策略和实际应用案例。最后展望未
- 【LLaMA 3实战】3、LLaMA 3长文本处理终极指南:从128K上下文到百万级文档实战
无心水
LLaMA3模型实战专栏LLaMALLaMA3长文本处理MetaAI大模型CSDN技术干货LLaMA3前沿模型实战
引言:长文本处理的技术跃迁当LLaMA3将上下文窗口扩展至128Ktokens(约8万字),长文本处理技术迎来了革命性突破。这不仅意味着模型能处理更复杂的文档,更开启了"全局认知"的新可能——从法律合同的全条款审查到代码仓库的跨文件重构,从金融报告的时序分析到医疗病历的全周期追踪。本文将系统拆解LLaMA3长文本能力的技术内核,提供工程级优化方案与实战技巧,助你突破长文本处理的算力瓶颈与应用边界。
- CPO-CNN-GRU-Attention、CNN-GRU-Attention、CPO-CNN-GRU、CNN-GRU四模型多变量时序预测对比
Matlab科研辅导帮
cnngru人工智能
✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。个人主页:Matlab科研工作室个人信条:格物致知,求助可私信。内容介绍多变量时序预测在诸多领域扮演着至关重要的角色,例如金融、气象和工业控制等。近年来,深度学习方法在时序预测任务中取得了显著的进展。本文旨在系统地比较四种基于卷积神经网络(CNN)和循环神经网络(GRU)的不同架构,包
- InfluxDB 3 Core 持久化机制深度解析:高可靠实时数据引擎的设计哲学与工业实践
梦想画家
数据库InfluxDB分层持久化架构
本文深入拆解InfluxDB3Core的数据持久化架构,涵盖写入流程、故障恢复、存储引擎设计,并结合物联网、金融监控等场景分析其高可靠性实现逻辑。通过对比传统时序数据库架构与性能实测数据,揭示新一代引擎如何平衡实时性与数据安全性,为大规模时序数据处理提供生产级保障。一、持久化核心机制:从写入到落盘的全链路保护1.分层持久化架构InfluxDB3Core采用三级数据保护策略:写入请求→内存缓冲区(V
- 基于人工智能的图表生成器
警世龙
开发记录人工智能自然语言处理
基于人工智能的图表生成器软件需求分析本项目旨在开发一个基于Web的图表生成工具,利用人工智能技术将自然语言描述转换为专业的流程图、时序图等可视化图表。具体需求如下:支持用户输入自然语言描述来生成图表。提供实时预览功能,让用户能够即时看到生成的图表。允许用户对生成的Mermaid代码进行编辑。支持图表的缩放和平移操作。提供代码保存和图片导出功能。具备快捷键支持,提高用户操作效率。技术选型前端HTML
- jquery实现的jsonp掉java后台
知了ing
javajsonpjquery
什么是JSONP?
先说说JSONP是怎么产生的:
其实网上关于JSONP的讲解有很多,但却千篇一律,而且云里雾里,对于很多刚接触的人来讲理解起来有些困难,小可不才,试着用自己的方式来阐释一下这个问题,看看是否有帮助。
1、一个众所周知的问题,Ajax直接请求普通文件存在跨域无权限访问的问题,甭管你是静态页面、动态网页、web服务、WCF,只要是跨域请求,一律不准;
2、
- Struts2学习笔记
caoyong
struts2
SSH : Spring + Struts2 + Hibernate
三层架构(表示层,业务逻辑层,数据访问层) MVC模式 (Model View Controller)
分层原则:单向依赖,接口耦合
1、Struts2 = Struts + Webwork
2、搭建struts2开发环境
a>、到www.apac
- SpringMVC学习之后台往前台传值方法
满城风雨近重阳
springMVC
springMVC控制器往前台传值的方法有以下几种:
1.ModelAndView
通过往ModelAndView中存放viewName:目标地址和attribute参数来实现传参:
ModelAndView mv=new ModelAndView();
mv.setViewName="success
- WebService存在的必要性?
一炮送你回车库
webservice
做Java的经常在选择Webservice框架上徘徊很久,Axis Xfire Axis2 CXF ,他们只有一个功能,发布HTTP服务然后用XML做数据传输。
是的,他们就做了两个功能,发布一个http服务让客户端或者浏览器连接,接收xml参数并发送xml结果。
当在不同的平台间传输数据时,就需要一个都能解析的数据格式。
但是为什么要使用xml呢?不能使json或者其他通用数据
- js年份下拉框
3213213333332132
java web ee
<div id="divValue">test...</div>测试
//年份
<select id="year"></select>
<script type="text/javascript">
window.onload =
- 简单链式调用的实现技术
归来朝歌
方法调用链式反应编程思想
在编程中,我们可以经常遇到这样一种场景:一个实例不断调用它自身的方法,像一条链条一样进行调用
这样的调用你可能在Ajax中,在页面中添加标签:
$("<p>").append($("<span>").text(list[i].name)).appendTo("#result");
也可能在HQ
- JAVA调用.net 发布的webservice 接口
darkranger
webservice
/**
* @Title: callInvoke
* @Description: TODO(调用接口公共方法)
* @param @param url 地址
* @param @param method 方法
* @param @param pama 参数
* @param @return
* @param @throws BusinessException
- Javascript模糊查找 | 第一章 循环不能不重视。
aijuans
Way
最近受我的朋友委托用js+HTML做一个像手册一样的程序,里面要有可展开的大纲,模糊查找等功能。我这个人说实在的懒,本来是不愿意的,但想起了父亲以前教我要给朋友搞好关系,再加上这也可以巩固自己的js技术,于是就开始开发这个程序,没想到却出了点小问题,我做的查找只能绝对查找。具体的js代码如下:
function search(){
var arr=new Array("my
- 狼和羊,该怎么抉择
atongyeye
工作
狼和羊,该怎么抉择
在做一个链家的小项目,只有我和另外一个同事两个人负责,各负责一部分接口,我的接口写完,并全部测联调试通过。所以工作就剩下一下细枝末节的,工作就轻松很多。每天会帮另一个同事测试一些功能点,协助他完成一些业务型不强的工作。
今天早上到公司没多久,领导就在QQ上给我发信息,让我多协助同事测试,让我积极主动些,有点责任心等等,我听了这话,心里面立马凉半截,首先一个领导轻易说
- 读取android系统的联系人拨号
百合不是茶
androidsqlite数据库内容提供者系统服务的使用
联系人的姓名和号码是保存在不同的表中,不要一下子把号码查询来,我开始就是把姓名和电话同时查询出来的,导致系统非常的慢
关键代码:
1, 使用javabean操作存储读取到的数据
package com.example.bean;
/**
*
* @author Admini
- ORACLE自定义异常
bijian1013
数据库自定义异常
实例:
CREATE OR REPLACE PROCEDURE test_Exception
(
ParameterA IN varchar2,
ParameterB IN varchar2,
ErrorCode OUT varchar2 --返回值,错误编码
)
AS
/*以下是一些变量的定义*/
V1 NUMBER;
V2 nvarc
- 查看端号使用情况
征客丶
windows
一、查看端口
在windows命令行窗口下执行:
>netstat -aon|findstr "8080"
显示结果:
TCP 127.0.0.1:80 0.0.0.0:0 &
- 【Spark二十】运行Spark Streaming的NetworkWordCount实例
bit1129
wordcount
Spark Streaming简介
NetworkWordCount代码
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
- Struts2 与 SpringMVC的比较
BlueSkator
struts2spring mvc
1. 机制:spring mvc的入口是servlet,而struts2是filter,这样就导致了二者的机制不同。 2. 性能:spring会稍微比struts快。spring mvc是基于方法的设计,而sturts是基于类,每次发一次请求都会实例一个action,每个action都会被注入属性,而spring基于方法,粒度更细,但要小心把握像在servlet控制数据一样。spring
- Hibernate在更新时,是可以不用session的update方法的(转帖)
BreakingBad
Hibernateupdate
地址:http://blog.csdn.net/plpblue/article/details/9304459
public void synDevNameWithItil()
{Session session = null;Transaction tr = null;try{session = HibernateUtil.getSession();tr = session.beginTran
- 读《研磨设计模式》-代码笔记-观察者模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
import java.util.Observable;
import java.util.Observer;
/**
* “观
- 重置MySQL密码
chenhbc
mysql重置密码忘记密码
如果你也像我这么健忘,把MySQL的密码搞忘记了,经过下面几个步骤就可以重置了(以Windows为例,Linux/Unix类似):
1、关闭MySQL服务
2、打开CMD,进入MySQL安装目录的bin目录下,以跳过权限检查的方式启动MySQL
mysqld --skip-grant-tables
3、新开一个CMD窗口,进入MySQL
mysql -uroot
 
- 再谈系统论,控制论和信息论
comsci
设计模式生物能源企业应用领域模型
再谈系统论,控制论和信息论
偶然看
- oracle moving window size与 AWR retention period关系
daizj
oracle
转自: http://tomszrp.itpub.net/post/11835/494147
晚上在做11gR1的一个awrrpt报告时,顺便想调整一下AWR snapshot的保留时间,结果遇到了ORA-13541这样的错误.下面是这个问题的发生和解决过程.
SQL> select * from v$version;
BANNER
-------------------
- Python版B树
dieslrae
python
话说以前的树都用java写的,最近发现python有点生疏了,于是用python写了个B树实现,B树在索引领域用得还是蛮多了,如果没记错mysql的默认索引好像就是B树...
首先是数据实体对象,很简单,只存放key,value
class Entity(object):
'''数据实体'''
def __init__(self,key,value)
- C语言冒泡排序
dcj3sjt126com
算法
代码示例:
# include <stdio.h>
//冒泡排序
void sort(int * a, int len)
{
int i, j, t;
for (i=0; i<len-1; i++)
{
for (j=0; j<len-1-i; j++)
{
if (a[j] > a[j+1]) // >表示升序
- 自定义导航栏样式
dcj3sjt126com
自定义
-(void)setupAppAppearance
{
[[UILabel appearance] setFont:[UIFont fontWithName:@"FZLTHK—GBK1-0" size:20]];
[UIButton appearance].titleLabel.font =[UIFont fontWithName:@"FZLTH
- 11.性能优化-优化-JVM参数总结
frank1234
jvm参数性能优化
1.堆
-Xms --初始堆大小
-Xmx --最大堆大小
-Xmn --新生代大小
-Xss --线程栈大小
-XX:PermSize --永久代初始大小
-XX:MaxPermSize --永久代最大值
-XX:SurvivorRatio --新生代和suvivor比例,默认为8
-XX:TargetSurvivorRatio --survivor可使用
- nginx日志分割 for linux
HarborChung
nginxlinux脚本
nginx日志分割 for linux 默认情况下,nginx是不分割访问日志的,久而久之,网站的日志文件将会越来越大,占用空间不说,如果有问题要查看网站的日志的话,庞大的文件也将很难打开,于是便有了下面的脚本 使用方法,先将以下脚本保存为 cutlog.sh,放在/root 目录下,然后给予此脚本执行的权限
复制代码代码如下:
chmo
- Spring4新特性——泛型限定式依赖注入
jinnianshilongnian
springspring4泛型式依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- centOS安装GCC和G++
liuxihope
centosgcc
Centos支持yum安装,安装软件一般格式为yum install .......,注意安装时要先成为root用户。
按照这个思路,我想安装过程如下:
安装gcc:yum install gcc
安装g++: yum install g++
实际操作过程发现,只能有gcc安装成功,而g++安装失败,提示g++ command not found。上网查了一下,正确安装应该
- 第13章 Ajax进阶(上)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- How to determine BusinessObjects service pack and fix pack
blueoxygen
BO
http://bukhantsov.org/2011/08/how-to-determine-businessobjects-service-pack-and-fix-pack/
The table below is helpful. Reference
BOE XI 3.x
12.0.0.
y BOE XI 3.0 12.0.
x.
y BO
- Oracle里的自增字段设置
tomcat_oracle
oracle
大家都知道吧,这很坑,尤其是用惯了mysql里的自增字段设置,结果oracle里面没有的。oh,no 我用的是12c版本的,它有一个新特性,可以这样设置自增序列,在创建表是,把id设置为自增序列
create table t
(
id number generated by default as identity (start with 1 increment b
- Spring Security(01)——初体验
yang_winnie
springSecurity
Spring Security(01)——初体验
博客分类: spring Security
Spring Security入门安全认证
首先我们为Spring Security专门建立一个Spring的配置文件,该文件就专门用来作为Spring Security的配置