水仙花数的实现(python)

目录

概况描述

定义

问题分析

附:其他位数的自幂数名字

代码实现


概况描述

水仙花数(Narcissistic number)也被称为超完全数字不变数(pluperfect digital invariant, PPDI)、自恋数、自幂数、阿姆斯壮数或阿姆斯特朗数(Armstrong number),水仙花数是指一个 3 位数,它的每个位上的数字的 3次幂之和等于它本身。例如:1^3 + 5^3+ 3^3 = 153。

定义

水仙花数只是自幂数的一种,严格来说3位数的3次幂数才称为水仙花数。

问题分析

根据“水仙花数”的定义,判断一个数是否为“水仙花数”,最重要的是要把给出的三位数的个位、十位、百位分别拆分,并求其立方和(设为s),若s与给出的三位数相等, 三位数为“水仙花数”,反之,则不是。

附:其他位数的自幂数名字

一位自幂数:独身数
三位自幂数:水仙花数
四位自幂数:四叶玫瑰数
五位自幂数:五角星数
六位自幂数:六合数
七位自幂数:北斗七星数
八位自幂数:八仙数
九位自幂数:九九重阳数
十位自幂数:十全十美数

代码实现

#方法一:

for i in range(100,1000):
    a = i//100
    b = (i-a*100)//10
    c = (i-a*100-b*10)

    if i == pow(a,3)+pow(b,3)+pow(c,3):  #(a * a * a + b * b * b + c * c * c)
        print(i)

#方法二:

for i in range(1,10):
    for j in range(0,10):
        for k in range(0,10):
           if i*100+j*10+k==i**3+j**3+k**3:
                print(i*100+j*10+k)

#四位自幂数:

for i in range(1000, 10000):
    a = int(i/1000)
    b = int(i % 1000/100)
    c = int(i % 100/10)
    d = int(i % 10)
    if pow(a, 4) + pow(b, 4) + pow(c, 4) + pow(d, 4) == i:
        print(i)

运行结果:

水仙花数的实现(python)_第1张图片

你可能感兴趣的:(Python,python)