一文读懂「Attention is All You Need」

一文读懂「Attention is All You Need」

  • 1. 介绍
  • 2. 模型架构
    • 2.1 模型框架
    • 2.2Encoder-Decoder 框架
      • 2.1.1 Encoder模块
      • 2.1.2 Decoder模块
      • 2.1.3 Attention模块
        • 2.1.3.1 Attention的结构
        • 2.1.3.2 multi head Attention结构
        • 2.1.3.3 Attention的整体计算过程
        • 2.1.3.4 过程详解举例
        • 2.1.3.5 代码实现
    • 2.3 Position-wise Feed-Forward
    • 2.4 Embeddings and Softmax
    • 2.5 Positional Encoding
    • 2.6 Full Model

1. 介绍

核心Transformer,下面我们介绍下Transformer

2. 模型架构

Transformer的抽象结构图
一文读懂「Attention is All You Need」_第1张图片
Transformer内部是encoder-decoder框架。

2.1 模型框架

每一个Transformer结构,由6个encoder和decoder构成。最后一个encoder连接到各个decoder
一文读懂「Attention is All You Need」_第2张图片
展开后如下图,其中N=6
一文读懂「Attention is All You Need」_第3张图片
transformer中decoder和encoder的内部网络结构
一文读懂「Attention is All You Need」_第4张图片
Encoder input  X = ( x 1 , x 2 . . . x n ) Decoder output  Y = ( y 1 , y 2 . . . y n ) o u t p u t {\text{Encoder input }} X=(x_{1}, x_{2}...x_{n}) \\ {\text{Decoder output }} Y=(y_{1}, y_{2}...y_{n}) \\ output Encoder input X=(x1,x2...xn)Decoder output Y=(y1,y2...yn)output

代码实现

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import math, copy, time
from torch.autograd import Variable
import matplotlib.pyplot as plt
import seaborn
seaborn.set_context(context="talk")
%matplotlib inline
class EncoderDecoder(nn.Module):
    """
    A standard Encoder-Decoder architecture. Base for this and many 
    other models.
    """
    def __init__(self, encoder, decoder, src_embed, tgt_embed, generator):
        super(EncoderDecoder, self).__init__()
        self.encoder = encoder
        self.decoder = decoder
        self.src_embed = src_embed
        self.tgt_embed = tgt_embed
        self.generator = generator
        
    def forward(self, src, tgt, src_mask, tgt_mask):
        "Take in and process masked src and target sequences."
        return self.decode(self.encode(src, src_mask), src_mask,
                            tgt, tgt_mask)
    
    def encode(self, src, src_mask):
        return self.encoder(self.src_embed(src), src_mask)
    
    def decode(self, memory, src_mask, tgt, tgt_mask):
        return self.decoder(self.tgt_embed(tgt), memory, src_mask, tgt_mask)
class Generator(nn.Module):
    "Define standard linear + softmax generation step."
    def __init__(self, d_model, vocab):
        super(Generator, self).__init__()
        self.proj = nn.Linear(d_model, vocab)

    def forward(self, x):
        return F.log_softmax(self.proj(x), dim=-1)

2.2Encoder-Decoder 框架

2.1.1 Encoder模块

Encoder整体结构
一文读懂「Attention is All You Need」_第5张图片
更详细的结构
一文读懂「Attention is All You Need」_第6张图片

代码实现

def clones(module, N):
    "Produce N identical layers."
    return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])
class Encoder(nn.Module):
    "Core encoder is a stack of N layers"
    def __init__(self, layer, N):
        super(Encoder, self).__init__()
        self.layers = clones(layer, N)
        self.norm = LayerNorm(layer.size)
        
    def forward(self, x, mask):
        "Pass the input (and mask) through each layer in turn."
        for layer in self.layers:
            x = layer(x, mask)
        return self.norm(x)

N=6个Encoder,一个Encoder包括EncoderLayer,LayerNorm,self-attention(后面单独讲),还有残差网络SublayerConnection, 计算LayerNorm(x + sublayer(x))

class LayerNorm(nn.Module):
    "Construct a layernorm module (See citation for details)."
    def __init__(self, features, eps=1e-6):
        super(LayerNorm, self).__init__()
        self.a_2 = nn.Parameter(torch.ones(features))
        self.b_2 = nn.Parameter(torch.zeros(features))
        self.eps = eps

    def forward(self, x):
        mean = x.mean(-1, keepdim=True)
        std = x.std(-1, keepdim=True)
        return self.a_2 * (x - mean) / (std + self.eps) + self.b_2
class SublayerConnection(nn.Module):
    """
    A residual connection followed by a layer norm.
    Note for code simplicity the norm is first as opposed to last.
    """
    def __init__(self, size, dropout):
        super(SublayerConnection, self).__init__()
        self.norm = LayerNorm(size)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x, sublayer):
        "Apply residual connection to any sublayer with the same size."
        return x + self.dropout(sublayer(self.norm(x)))
class EncoderLayer(nn.Module):
    "Encoder is made up of self-attn and feed forward (defined below)"
    def __init__(self, size, self_attn, feed_forward, dropout):
        super(EncoderLayer, self).__init__()
        self.self_attn = self_attn
        self.feed_forward = feed_forward
        self.sublayer = clones(SublayerConnection(size, dropout), 2)
        self.size = size

    def forward(self, x, mask):
        "Follow Figure 1 (left) for connections."
        x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, mask))
        return self.sublayer[1](x, self.feed_forward)

2.1.2 Decoder模块

代码实现

class Decoder(nn.Module):
    "Generic N layer decoder with masking."
    def __init__(self, layer, N):
        super(Decoder, self).__init__()
        self.layers = clones(layer, N)
        self.norm = LayerNorm(layer.size)
        
    def forward(self, x, memory, src_mask, tgt_mask):
        for layer in self.layers:
            x = layer(x, memory, src_mask, tgt_mask)
        return self.norm(x)
class DecoderLayer(nn.Module):
    "Decoder is made of self-attn, src-attn, and feed forward (defined below)"
    def __init__(self, size, self_attn, src_attn, feed_forward, dropout):
        super(DecoderLayer, self).__init__()
        self.size = size
        self.self_attn = self_attn
        self.src_attn = src_attn
        self.feed_forward = feed_forward
        self.sublayer = clones(SublayerConnection(size, dropout), 3)
 
    def forward(self, x, memory, src_mask, tgt_mask):
        "Follow Figure 1 (right) for connections."
        m = memory
        x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, tgt_mask))
        x = self.sublayer[1](x, lambda x: self.src_attn(x, m, m, src_mask))
        return self.sublayer[2](x, self.feed_forward)
def subsequent_mask(size):
    "Mask out subsequent positions."
    attn_shape = (1, size, size)
    subsequent_mask = np.triu(np.ones(attn_shape), k=1).astype('uint8')
    return torch.from_numpy(subsequent_mask) == 0

2.1.3 Attention模块

2.1.3.1 Attention的结构

一文读懂「Attention is All You Need」_第7张图片

  1. 先介绍下Q、K、V三个矩阵。QKV是通过X进行线性变换得到的
    一文读懂「Attention is All You Need」_第8张图片
  2. 进行计算
    一文读懂「Attention is All You Need」_第9张图片

2.1.3.2 multi head Attention结构

一文读懂「Attention is All You Need」_第10张图片

  1. 对每个Head进行计算
    一文读懂「Attention is All You Need」_第11张图片
  2. 每个X的每个Header得到对应的Z
    一文读懂「Attention is All You Need」_第12张图片
  3. 所有Zconcat起来,再计算得到Z
    一文读懂「Attention is All You Need」_第13张图片

2.1.3.3 Attention的整体计算过程

一文读懂「Attention is All You Need」_第14张图片

2.1.3.4 过程详解举例

  1. 生成q、k、v三个向量,生成方法为分别乘以三个矩阵。词向量从512维变成qkv的64维
    一文读懂「Attention is All You Need」_第15张图片
  2. 计算Thinking的Attention,我们需要计算所有整个句子所有单词跟Thinking的相关性。q1和所有k分别进行点积。
    一文读懂「Attention is All You Need」_第16张图片
  3. 进行归一化。除以8(paper中采用维度64的平方根,这样梯度会更稳定,可以为其他的值)。然后加上softmax操作。
    一文读懂「Attention is All You Need」_第17张图片
  4. 将softmax分值与Value vector按位相乘。并加和得到z向量。
    一文读懂「Attention is All You Need」_第18张图片

2.1.3.5 代码实现

def attention(query, key, value, mask=None, dropout=None):
    "Compute 'Scaled Dot Product Attention'"
    d_k = query.size(-1)
    scores = torch.matmul(query, key.transpose(-2, -1)) \
             / math.sqrt(d_k)
    if mask is not None:
        scores = scores.masked_fill(mask == 0, -1e9)
    p_attn = F.softmax(scores, dim = -1)
    if dropout is not None:
        p_attn = dropout(p_attn)
    return torch.matmul(p_attn, value), p_attn
class MultiHeadedAttention(nn.Module):
    def __init__(self, h, d_model, dropout=0.1):
        "Take in model size and number of heads."
        super(MultiHeadedAttention, self).__init__()
        assert d_model % h == 0
        # We assume d_v always equals d_k
        self.d_k = d_model // h
        self.h = h
        self.linears = clones(nn.Linear(d_model, d_model), 4)
        self.attn = None
        self.dropout = nn.Dropout(p=dropout)
        
    def forward(self, query, key, value, mask=None):
        "Implements Figure 2"
        if mask is not None:
            # Same mask applied to all h heads.
            mask = mask.unsqueeze(1)
        nbatches = query.size(0)
        
        # 1) Do all the linear projections in batch from d_model => h x d_k 
        query, key, value = \
            [l(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2)
             for l, x in zip(self.linears, (query, key, value))]
        
        # 2) Apply attention on all the projected vectors in batch. 
        x, self.attn = attention(query, key, value, mask=mask, 
                                 dropout=self.dropout)
        
        # 3) "Concat" using a view and apply a final linear. 
        x = x.transpose(1, 2).contiguous() \
             .view(nbatches, -1, self.h * self.d_k)
        return self.linears[-1](x)

2.3 Position-wise Feed-Forward

class PositionwiseFeedForward(nn.Module):
    "Implements FFN equation."
    def __init__(self, d_model, d_ff, dropout=0.1):
        super(PositionwiseFeedForward, self).__init__()
        self.w_1 = nn.Linear(d_model, d_ff)
        self.w_2 = nn.Linear(d_ff, d_model)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        return self.w_2(self.dropout(F.relu(self.w_1(x))))

2.4 Embeddings and Softmax

输入词向量的Embedding

class Embeddings(nn.Module):
    def __init__(self, d_model, vocab):
        super(Embeddings, self).__init__()
        self.lut = nn.Embedding(vocab, d_model)
        self.d_model = d_model

    def forward(self, x):
        return self.lut(x) * math.sqrt(self.d_model)

2.5 Positional Encoding

位置编码,从上面的结构看Transformer还不具备时序学习能力。为了解决这个问题,加了位置编码。
常见的模式有:

  1. 根据数据学习;
  2. 自己设计编码规则 (Transformer采用)
    一文读懂「Attention is All You Need」_第19张图片
    一文读懂「Attention is All You Need」_第20张图片
    论文中给出的编码公式。
    一文读懂「Attention is All You Need」_第21张图片
    其中,pos表示单词的位置, i 表示单词的维度

P E p o s + k 都可以被 P E p o s 的线性函数表示,三角函数特性: c o s ( α + β ) = c o s ( α ) c o s ( β ) − s i n ( α ) s i n ( β ) s i n ( α + β ) = s i n ( α ) c o s ( β ) + c o s ( α ) s i n ( β ) PE_{pos+k} {\text{都可以被}} PE_{pos}{\text{的线性函数表示,三角函数特性:}} \\ cos(\alpha+\beta)=cos(\alpha)cos(\beta)-sin(\alpha)sin(\beta) \\ sin(\alpha+\beta)=sin(\alpha)cos(\beta)+cos(\alpha)sin(\beta) PEpos+k都可以被PEpos的线性函数表示,三角函数特性:cos(α+β)=cos(α)cos(β)sin(α)sin(β)sin(α+β)=sin(α)cos(β)+cos(α)sin(β)
也就是Transformer可以捕获单词相对位置的信息。

代码实现

class PositionalEncoding(nn.Module):
    "Implement the PE function."
    def __init__(self, d_model, dropout, max_len=5000):
        super(PositionalEncoding, self).__init__()
        self.dropout = nn.Dropout(p=dropout)
        
        # Compute the positional encodings once in log space.
        pe = torch.zeros(max_len, d_model)
        position = torch.arange(0, max_len).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2) *
                             -(math.log(10000.0) / d_model))
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        pe = pe.unsqueeze(0)
        self.register_buffer('pe', pe)
        
    def forward(self, x):
        x = x + Variable(self.pe[:, :x.size(1)], 
                         requires_grad=False)
        return self.dropout(x)

2.6 Full Model

def make_model(src_vocab, tgt_vocab, N=6, 
               d_model=512, d_ff=2048, h=8, dropout=0.1):
    "Helper: Construct a model from hyperparameters."
    c = copy.deepcopy
    attn = MultiHeadedAttention(h, d_model)
    ff = PositionwiseFeedForward(d_model, d_ff, dropout)
    position = PositionalEncoding(d_model, dropout)
    model = EncoderDecoder(
        Encoder(EncoderLayer(d_model, c(attn), c(ff), dropout), N),
        Decoder(DecoderLayer(d_model, c(attn), c(attn), 
                             c(ff), dropout), N),
        nn.Sequential(Embeddings(d_model, src_vocab), c(position)),
        nn.Sequential(Embeddings(d_model, tgt_vocab), c(position)),
        Generator(d_model, tgt_vocab))
    
    # This was important from their code. 
    # Initialize parameters with Glorot / fan_avg.
    for p in model.parameters():
        if p.dim() > 1:
            nn.init.xavier_uniform(p)
    return model
tmp_model = make_model(10, 10, 2)

参考:

  1. illustrated
  2. transformer-pytorch

你可能感兴趣的:(机器学习,深度学习,nlp,深度学习)