视觉里程计- 位姿

视觉里程计- 位姿_第1张图片

 

视觉里程计- 位姿_第2张图片

 注意到位姿节点之间的变换并不是位姿,之前一直有误解;

 

一般地;

路标节点也就是观测方程【数学形式下见】的观测值,也就是特征点的像素坐标[u,v],或者该帧相机坐标系下的3d坐标[x,y,z];

 

位姿节点也就是运动方程【数学形式下见】的输出值。例如:上述x1、x2、x3、X4对应位姿为:Tcw1、Tcw2、Tcw3、Tcw4。这里的Tcw表示对应帧相机坐标系->世界坐标系的变换;比如:在x1处看到了路标点p1,在x2处也看到了路标点p1(当然是通过特征匹配才知道再次看到)考虑以下两种情况:

 

1>  x1对应第一帧,x2对应第二帧

那么x1的相机坐标系即为:世界坐标系;那么第一帧位姿我们直接初始化为:

 视觉里程计- 位姿_第3张图片

第二帧我们要:通过……solvePNPransac(points3d_1, points2d_2,R,t);来求解,points3d_1对应的是世界坐标系下的3D点(在这种情形,第一帧相机坐标系也就是世界坐标系,所以第一帧相机坐标系下的3D点), points2d_2是第二帧像素点(设第二帧对应3D路标点(在第二帧相机坐标系下)为:points3d_2)。

在这里[左乘],

                                                       Tcw2 * points3d_1 = points3d_2

     同时必须知道:(假设两帧之间的变换 T12,也就是 位姿变换

                                                                   T12 * Tcw1 = Tcw2

2> x2对应第2帧,x3对应第3帧

接着,我们再次想通过solvePNPransac(points3d_2_, points2d_3,R,t)来求解Tcw3,points3d_2_ (世界坐标系)肯定不是 points3d_2(相机坐标系),所以在第一种情形你就应该提前将points3d_2 从它所在的相机坐标系映射到世界坐标系,故:

                                                                 points3d_2_ = Tcw2.inverse() * points3d_2

我们得出流程图如下图:

 

视觉里程计- 位姿_第4张图片

观测模型:具体见下

运动模型:具体见下

两个模型与G2O结合了解说明;

 

位姿:位置和姿态;

对于上述位姿图,我们假设 x1 对应参考帧 ref_(同时假设是第一帧),x2对应 当前帧curr_(同时假设是第二帧);我们通过......最后通过opencv中API solvePNPransac();求出的R|t 其实是Tcw;

Tcw指的是:当前帧与世界坐标系之间的变换;

Trw指的是:参考帧与世界坐标系之间的变换。那么待估计的两帧之间的变换为:Tcr,构成左乘关系:

                                                                                       Tcr, s.t. Tcr * Trw = Tcw 

P_camera_curr 指的是:当前帧3D路标点 (相机坐标系)

P_world_ref      指的是:参考帧3D路标点    (世界坐标系)

                                                                               P_camera_curr = Tcw*P_world_ref

这里 opencv中的 solvePNPransac 求出来的是 T = (R|t);依据上述公式:所以你要将当前帧3D路标点转化到世界坐标系,应该是左乘:Tcw.inverse() * P_camera_curr = P_world_ref;请看以下代码【就是匹配,第一帧相机坐标系当作世界坐标系,第二帧就是相机坐标系,重点关注代码 81行 - 124行】:

 

 
    
  1 #include 
  2 #include 
  3 #include 
  4 #include 
  5 #include 
  6 #include 
  7 #include 
  8 #include 
  9 #include 
 10 #include 
 11 #include 
 12 #include 
 13 #include 
 14 #include 
 15 
 16 using namespace std;
 17 using namespace cv;
 18 
 19 #include"sophus\se3.h"
 20 #include"sophus\so3.h"
 21 
 22 void find_feature_matches(
 23     const Mat& img_1, const Mat& img_2,
 24     std::vector& keypoints_1,
 25     std::vector& keypoints_2,
 26     std::vector< DMatch >& matches);
 27 
 28 // 像素坐标转相机归一化坐标
 29 Point2d pixel2cam(const Point2d& p, const Mat& K);
 30 
 31 void bundleAdjustment(
 32 const vector points_3d,
 33 const vector points_2d,
 34 const Mat& K,
 35 Mat& R, Mat& t
 36 );
 37 
 38 int main()
 39 {
 40     //-- 读取图像
 41     Mat img_1 = imread("color/b.png", CV_LOAD_IMAGE_COLOR);
 42     Mat img_2 = imread("color/c.png", CV_LOAD_IMAGE_COLOR);
 43 
 44     vector keypoints_1, keypoints_2;
 45     vector matches;
 46     find_feature_matches(img_1, img_2, keypoints_1, keypoints_2, matches);
 47     cout << "一共找到了" << matches.size() << "组匹配点" << endl;
 48 
 49     // 建立3D点
 50     Mat depth_1 = imread("depth/b.pgm", CV_LOAD_IMAGE_UNCHANGED);       // 深度图为16位无符号数,单通道图像
 51     Mat depth_2 = imread("depth/c.pgm", CV_LOAD_IMAGE_UNCHANGED);       // 深度图为16位无符号数,单通道图像
 52                                                                    //Mat K = (Mat_(3, 3) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1);
 53     Mat K = (Mat_<double>(3, 3) << 518.0, 0, 325.5, 0, 519.0, 253.5, 0, 0, 1);
 54     vector pts_3d1;//世界坐标点
 55     vector pts_3d2;
 56     vector pts_2d;//相机坐标系点(归一化???)
 57                            //【注:】这里表示同一个3D点在两幅图中的图二对应像素点,本来就是求世界坐标系下的r、t
 58     for (DMatch m : matches)
 59     {
 60         //取出深度值,此时彩图和深度图已经对齐
 61         ushort d1 = depth_1.ptrshort>(int(keypoints_1[m.queryIdx].pt.y))[int(keypoints_1[m.queryIdx].pt.x)];
 62         ushort d2 = depth_2.ptrshort>(int(keypoints_2[m.trainIdx].pt.y))[int(keypoints_2[m.trainIdx].pt.x)];
 63         if ((d1 == 0) || (d2 == 0))   // bad depth
 64             continue;
 65         float dd1 = d1 / 1.0;
 66         float dd2 = d2 / 1.0;
 67         Point2d p1 = pixel2cam(keypoints_1[m.queryIdx].pt, K); // 相机坐标系归一化平面:p1的形式 [x/z,y/z,1]
 68         Point2d p2 = pixel2cam(keypoints_2[m.trainIdx].pt, K);
 69         pts_3d1.push_back(Point3f(p1.x*dd1, p1.y*dd1, dd1));//乘以Z就得到形式  [x,y,z]?????左边相机为参考,把他当作世界坐标系,确实是这样的
 70         pts_3d2.push_back(Point3f(p2.x*dd2, p2.y*dd2, dd2));
 71         pts_2d.push_back(keypoints_2[m.trainIdx].pt);//图二中的2D像素坐标[u,v]
 72     }
 73 
 74     cout << "3d-2d pairs: " << pts_3d1.size() << endl;
 75 
 76     Mat r, t;
 77     // 调用OpenCV 的 PnP 求解r t,可选择EPNP,DLS等方法
 78     //solvePnP(pts_3d, pts_2d, K, Mat(), r, t, false); 
 79     //solvePnP(pts_3d1, pts_2d, K, Mat(), r, t, false, SOLVEPNP_EPNP);
 80 
 81     cv::solvePnPRansac(pts_3d1, pts_2d, K, Mat(), r, t, false, 100, 1.0, 0.99);
 82 
 83     Mat R;
 84     cv::Rodrigues(r, R); // r为旋转向量形式,用Rodrigues公式转换为矩阵
 85                          //RR = -R.inv();
 86     cout << "R=" << endl << R << endl;
 87     cout << "t=" << endl << t << endl;
 88     //************************************************************************************************
 89     // 李群
 90     //************************************************************************************************
 91     Sophus::SE3 T_se3 = Sophus::SE3(
 92         Sophus::SO3(r.at<double>(0, 0), r.at<double>(1, 0), r.at<double>(2, 0)),
 93         Sophus::Vector3d(t.at<double>(0, 0), t.at<double>(1, 0), t.at<double>(2, 0))
 94     );
 95     cout << "T_se3 = " << T_se3.matrix() << endl;
 96     //************************************************************************************************
 97     // 欧氏群
 98     //************************************************************************************************
 99     Eigen::Isometry3d T_Isometry3d = Eigen::Isometry3d::Identity();
100     //Eigen::AngleAxisd rot_vec(r.at(0, 0), r.at(1, 0), r.at(2, 0));
101     Eigen::Vector3d trans(t.at<double>(0, 0), t.at<double>(1, 0), t.at<double>(2, 0));
102     Eigen::Matrix<double, 3, 3> R_;
103     R_ << R.at<double>(0,0), R.at<double>(0,1), R.at<double>(0,2),
104           R.at<double>(1,0), R.at<double>(1,1), R.at<double>(1,2),
105           R.at<double>(2,0), R.at<double>(2,1), R.at<double>(2,2);
106     T_Isometry3d.rotate(R_);
107     T_Isometry3d.pretranslate(trans);
108     cout << " T_Isometry3d = " << T_Isometry3d.matrix() << endl;
109 
110     cout << "calling bundle adjustment" << endl;
111     bundleAdjustment(pts_3d1, pts_2d, K, R, t);
112     //************************************************************************************************
113     // 计算误差:error = point3d_curr -( R * point3d_ref + t )
114     //************************************************************************************************
115     for (int i = 0; i < 20; i++)
116     {
117         cout << " pts_3d1 =  " << pts_3d1[i] << endl;
118         cout << " pts_3d2 =  " << pts_3d2[i] << endl;
119         cout << " error " <<
120             (Mat_<double>(3, 1) << pts_3d2[i].x, pts_3d2[i].y, pts_3d2[i].z)
121             - R*((Mat_<double>(3, 1) << pts_3d1[i].x, pts_3d1[i].y, pts_3d1[i].z)) - t
122             << endl;
123         cout << endl;
124     }
125 
126     waitKey(0);
127     return 0;
128 }
129 
130 void find_feature_matches(const Mat& img_1, const Mat& img_2,
131     std::vector& keypoints_1,
132     std::vector& keypoints_2,
133     std::vector< DMatch >& matches)
134 {
135     //-- 初始化
136     Mat descriptors_1, descriptors_2;
137     // used in OpenCV3
138     Ptr detector = ORB::create(1000);
139     Ptr descriptor = ORB::create();
140     // use this if you are in OpenCV2
141     // Ptr detector = FeatureDetector::create ( "ORB" );
142     // Ptr descriptor = DescriptorExtractor::create ( "ORB" );
143     Ptr matcher = DescriptorMatcher::create("BruteForce-Hamming");
144     //-- 第一步:检测 Oriented FAST 角点位置
145     detector->detect(img_1, keypoints_1);
146     detector->detect(img_2, keypoints_2);
147 
148     //-- 第二步:根据角点位置计算 BRIEF 描述子
149     descriptor->compute(img_1, keypoints_1, descriptors_1);
150     descriptor->compute(img_2, keypoints_2, descriptors_2);
151 
152     //-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离
153     vector match;
154     // BFMatcher matcher ( NORM_HAMMING );
155     matcher->match(descriptors_1, descriptors_2, match);
156 
157     //-- 第四步:匹配点对筛选
158     double min_dist = 10000, max_dist = 0;
159 
160     //找出所有匹配之间的最小距离和最大距离, 即是最相似的和最不相似的两组点之间的距离
161     for (int i = 0; i < descriptors_1.rows; i++)
162     {
163         double dist = match[i].distance;
164         if (dist < min_dist) min_dist = dist;
165         if (dist > max_dist) max_dist = dist;
166     }
167 
168     printf("-- Max dist : %f \n", max_dist);
169     printf("-- Min dist : %f \n", min_dist);
170 
171     //当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限.
172     for (int i = 0; i < descriptors_1.rows; i++)
173     {
174         if (match[i].distance <= max(2 * min_dist, 30.0))
175         {
176             matches.push_back(match[i]);
177         }
178     }
179 
180 
181 
182     Mat img_match;
183     Mat img_goodmatch;
184     drawMatches(img_1, keypoints_1, img_2, keypoints_2, match, img_match);
185     drawMatches(img_1, keypoints_1, img_2, keypoints_2, matches, img_goodmatch);
186     namedWindow("所有匹配点对", CV_WINDOW_NORMAL);
187     imshow("所有匹配点对", img_match);
188     namedWindow("优化后匹配点对", CV_WINDOW_NORMAL);
189     imshow("优化后匹配点对", img_goodmatch);
190 }
191 
192 Point2d pixel2cam(const Point2d& p, const Mat& K)// [u,v,1] - > [x/z, y/z, 1]
193 {
194     return Point2d
195     (
196         (p.x - K.at<double>(0, 2)) / K.at<double>(0, 0),
197         (p.y - K.at<double>(1, 2)) / K.at<double>(1, 1)
198     );
199 }
200 
201 
202 void bundleAdjustment(
203 const vector< Point3f > points_3d,
204 const vector< Point2f > points_2d,
205 const Mat& K,
206 Mat& R, Mat& t)
207 {
208 // 初始化g2o
209 typedef g2o::BlockSolver< g2o::BlockSolverTraits<6, 3> > Block;  // pose 维度为 6, landmark 维度为 3
210 Block::LinearSolverType* linearSolver = new g2o::LinearSolverCSparse(); // 线性方程求解器
211 Block* solver_ptr = new Block(linearSolver);     // 矩阵块求解器
212 g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);
213 g2o::SparseOptimizer optimizer;
214 optimizer.setAlgorithm(solver);
215 
216 // vertex
217 g2o::VertexSE3Expmap* pose = new g2o::VertexSE3Expmap(); // camera pose
218 Eigen::Matrix3d R_mat;
219 R_mat <<
220 R.at<double>(0, 0), R.at<double>(0, 1), R.at<double>(0, 2),
221 R.at<double>(1, 0), R.at<double>(1, 1), R.at<double>(1, 2),
222 R.at<double>(2, 0), R.at<double>(2, 1), R.at<double>(2, 2);
223 pose->setId(0);
224 pose->setEstimate(g2o::SE3Quat(
225 R_mat,
226 Eigen::Vector3d(t.at<double>(0, 0), t.at<double>(1, 0), t.at<double>(2, 0))
227 ));
228 optimizer.addVertex(pose);
229 
230 int index = 1;
231 for (const Point3f p : points_3d)   // landmarks
232 {
233 g2o::VertexSBAPointXYZ* point = new g2o::VertexSBAPointXYZ();
234 point->setId(index++);
235 point->setEstimate(Eigen::Vector3d(p.x, p.y, p.z));
236 point->setMarginalized(true); // g2o 中必须设置 marg 参见第十讲内容
237 optimizer.addVertex(point);
238 }
239 
240 // parameter: camera intrinsics
241 g2o::CameraParameters* camera = new g2o::CameraParameters(
242 K.at<double>(0, 0), Eigen::Vector2d(K.at<double>(0, 2), K.at<double>(1, 2)), 0
243 );
244 camera->setId(0);
245 optimizer.addParameter(camera);
246 
247 // edges
248 index = 1;
249 for (const Point2f p : points_2d)
250 {
251 g2o::EdgeProjectXYZ2UV* edge = new g2o::EdgeProjectXYZ2UV();
252 edge->setId(index);
253 edge->setVertex(0, dynamic_cast (optimizer.vertex(index)));
254 edge->setVertex(1, pose);
255 edge->setMeasurement(Eigen::Vector2d(p.x, p.y));
256 edge->setParameterId(0, 0);
257 edge->setInformation(Eigen::Matrix2d::Identity());
258 optimizer.addEdge(edge);
259 index++;
260 }
261 
262 chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
263 optimizer.setVerbose(true);
264 optimizer.initializeOptimization();
265 optimizer.optimize(100);
266 chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
267 chrono::duration<double> time_used = chrono::duration_castdouble>> (t2 - t1);
268 cout << "optimization costs time: " << time_used.count() << " seconds." << endl;
269 
270 cout << endl << "after optimization:" << endl;
271 cout << "T=" << endl << Eigen::Isometry3d(pose->estimate()).matrix() << endl;
272 }
View Code

 这里我们只关心运动,不关心结构。换句话说,只要通过特征点成功求出了运动,我们就不再需要这帧的特征点了。这种做法当然会有缺陷,但是忽略掉数量庞大的特征点可以节省许多的计算量。然后,在 t 到 t + 1 时刻,我们又以 t 时刻为参考帧,考虑 t 到 t + 1 间的运动关系。如此往复,就得到了一条运动轨迹

视觉里程计- 位姿_第5张图片

 

 视觉里程计- 位姿_第6张图片

 

视觉里程计- 位姿_第7张图片

 

转载于:https://www.cnblogs.com/winslam/p/9245777.html

你可能感兴趣的:(人工智能)