朴素贝叶斯法 - 垃圾邮件分类

本文基于朴素贝叶斯构建一个分类垃圾邮件的模型,研究对象是英文的垃圾邮件。

邮件内容保存在txt文件中,其中分为训练样本train和测试样本test。
在训练样本中正常邮件命名为:pos;垃圾邮件命名为:neg。
同时,可以将待分类的测试样本放入测试文件test中的对于pos,或者neg下,用来进行测试,如果是垃圾邮件则类别为0,反之类别为1。

在朴素贝叶斯法进行垃圾邮件的分类的思想中:有一个方法与一个假设:
  贝叶斯定理:求解p(c|x)的问题变成了求解p(x|c)的问题
  特征条件独立假设 :X的n个特征在某类确定的条件下都是条件独立的。
具体可以看:[监督学习] 朴素贝叶斯法.
在GitHub上的数据: 数据及代码.

1 邮件分类算法步骤

1 建立词汇表,(用来收集训练集中所有邮件的词汇。)
2 每封邮件词汇向量,(通过所有词汇来确定每封邮件中词汇出现的数量。)
3 计算先验概率p(b)
4 计算每个词汇的条件概率
5 用例测试

完整程序:

# -*- coding: utf-8 -*-
# @Time    : 2020/4/16 21:09
# @Author  : Zudy

'''
1. 基于朴素贝叶斯的垃圾邮件分类
'''

from sklearn import datasets
from time import time
import numpy
import re
import os
import random

def load_data(folder_path):
    print("Loading dataset ...")
    loadTime = time()
    datalist = datasets.load_files(folder_path)
    #datalist是一个Bunch类,其中重要的数据项有
    #data:原始数据
    #filenames:每个文件的名称
    #target:类别标签(子目录的文件从0开始标记了索引)
    #target_names:类别标签(子目录的具体名称)
    #输出总文档数和类别数
    print("summary: {0} documents in {1} categories.".format(len(datalist.data),len(datalist.target_names)))
    #加载数据所用的时间
    print("Load data in {0}seconds".format(time() - loadTime))
    #去停用词操作
    #datalist.data = [word for word in datalist.data if(word not in stopwords.words('english'))]
    return datalist

# 返回集合列表
def word_create(ori_data):
    print("\nVectorzing dataset ...")
    word_dic = set([]) #建立一个集合列表
    #词向量的时间
    vectorTime = time()
    #词典的构造
    for doc in ori_data.data:
        #doc是byte,这里将byte转化为string
        doc = str(doc, encoding = "utf-8")
        #使用正则表达式将特殊符号去除
        doc = re.sub("[\s+\.\!\/_,$%^*(+\"\'-]+|[+——!,。?、~@#¥%……&*()<>]+", " ", doc)
        #使用默认的空格方式将email分隔开,然后转化为小写字母,与原集合取并集
        word_dic = word_dic|set(doc.lower().split())
    #向量化的时间和词典中词的数量
    print("Vectorzing time:{0}\nThe number of word_dictionary:{1}".format(vectorTime,len(word_dic)))
    return list(word_dic)

def doc_represent(wordDic,ori_data):
    #创建一个文档数(行)*词向量(列)长度的二维数组
    doc_re = numpy.zeros((len(ori_data.data),len(wordDic)),dtype= numpy.int)
    #计数器
    count = 0
    #用来记录词向量表示时间
    representTime = time()
    for doc in ori_data.data:
        #同word_create函数,进行同样的操作
        doc = str(doc, encoding = "utf-8")
        doc = re.sub("[\s+\.\!\/_,$%^*(+\"\'-]+|[+——!,。?、~@#¥%……&*()<>]+", " ", doc)
        for word in doc.lower().split():
            if word in wordDic:
                #将对应词向量位置置1
                doc_re[count][wordDic.index(word)] = 1
        count = count+1
    print("Represent doc time:{0}\nThe number of doc:{1}".format(representTime-time(),len(doc_re)))
    #返回表示文档的二维数组
    return doc_re

def pre_probabilty(ori_data):
    s_pre_pro = []
    #正常邮件的先验概率
    P_normal = (normal + 1.0)/(len(ori_data.data) + 2.0)
    s_pre_pro.append(P_normal)
    #垃圾邮件的先验概率
    P_spam = (spam + 1.0)/(len(ori_data.data) + 2.0)
    s_pre_pro.append(P_spam)
    #返回先验概率的列表
    return s_pre_pro

#计算每个词在正常邮件垃圾邮件中的数目
def wordNum_email(email_repre,wordDic):
    #用二维向量存储
    num_word = numpy.zeros((2,len(wordDic)),dtype= numpy.int)
    for i in range(len(wordDic)):
        #在正常邮件的数目
        for j in range(normal):
            num_word[0][i] += email_repre[j][i]
        #在垃圾邮件中的数目
        for j in range(normal, spam+normal):
            num_word[1][i] += email_repre[j][i]
    return num_word

#条件概率
def con_probabilty(email_repre,wordDic):
    #得到每个词汇在正常邮件、垃圾邮件中的数目
    word_num = wordNum_email(email_repre,wordDic)
    word_pro = numpy.zeros((2,len(wordDic)),dtype = numpy.double)
    for i in range(len(wordDic)):
        word_pro[0][i] = round((word_num[0][i]+1)/(normal + 2),8)
        word_pro[1][i] = round((word_num[1][i]+1)/(spam + 2 ),8)
    return word_pro

#得到每个类别中的文档数
def class_num(path,class_name):
    count = 0
    path=path+"/"+class_name
    for root, dirs, files in os.walk(path):  # 遍历统计
        for each in files:
            count += 1
    return count

#测试
def test_spam(test_repre,pre_pro,con_pro):
    email_pro = numpy.zeros((len(test_repre),2),dtype = numpy.double)
    email_judge = []
    normal_num = 0
    spam_num = 0
    for i in range(len(test_repre)):
        email_pro[i][0] = round(pre_pro[0],8)
        email_pro[i][1] = round(pre_pro[1],8)
        for j in range(len(test_repre[0])):
            if test_repre[i][j] != 0:
                email_pro[i][0] *= con_pro[0][j]
                email_pro[i][1] *= con_pro[1][j]
        if email_pro[i][0] > email_pro[i][1] :
            email_judge.append(0)
        elif email_pro[i][0] < email_pro[i][1] :
            email_judge.append(1)
        else :
            if random.random() > 0.5:
                email_judge.append(1)
            else:
                email_judge.append(0)
    for i in range(normal_test):
        if email_judge[i] == 0:
            normal_num +=1
    for i in range(normal_test,len(test_repre)):
        if email_judge[i] == 1:
            spam_num +=1
    print("email_judge=")
    print(email_judge)
    print("normal_num="+str(normal_num)+"\nspam_num="+str(spam_num))
    return (normal_num + spam_num)/len(test_repre)

if __name__ == "__main__":
     # 训练集和测试集的路径
     train_path = "D:/Python/Python_learning/Book_code/LH_mechine_learning/bayes/spamDataset/email/train1"
     test_path = "D:/Python/Python_learning/Book_code/LH_mechine_learning/bayes/spamDataset/email/test1"
     train_list = load_data(train_path)
     test_list = load_data(test_path)

     normal = class_num(train_path,"pos")  # 正常邮件的数目
     spam = class_num(train_path,"neg")  # 垃圾邮件的数目

     WordDictionary = word_create(train_list)   # 建立词汇表
     docRepre = doc_represent(WordDictionary,train_list)  # 将训练数据进行向量表示
     prePro = pre_probabilty(train_list)
     conPro = con_probabilty(docRepre,WordDictionary)
     print("\npreProbablity:",prePro)   # 计算先验概率
     print("conProbablity:",conPro)   # 计算条件概率

     testRepre = doc_represent(WordDictionary,test_list)  # 测试数据的向量表示
     normal_test = class_num(test_path, "pos")  # 正常邮件的数目
     spam_test = class_num(test_path, "neg")  # 垃圾邮件的数目

     test_accuracy = test_spam(testRepre,prePro,conPro)  # 测试数据的准确率
     print ("test accuracy")
     print(test_accuracy)

2 测试结果

Loading dataset ...
summary: 43 documents in 2 categories.
Load data in 0.008994102478027344seconds
Loading dataset ...
summary: 36 documents in 2 categories.
Load data in 0.007995843887329102seconds

Vectorzing dataset ...
Vectorzing time:1587043343.3496442
The number of word_dictionary:2426
Represent doc time:-0.5976784229278564
The number of doc:43

preProbablity: [0.5777777777777777, 0.4222222222222222]
conProbablity: [[0.59259259 0.07407407 0.03703704 ... 0.11111111 0.07407407 0.03703704]
 [0.7        0.05       0.15       ... 0.05       0.05       0.1       ]]
Represent doc time:-0.5137045383453369
The number of doc:36
email_judge=
[0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1]
normal_num=16
spam_num=13
test accuracy
0.8055555555555556

参考文献:
链接: 基于朴素贝叶斯的垃圾邮件分类.

你可能感兴趣的:(机器学习,python,机器学习,朴素贝叶斯算法)