- 23章9节:分层随机抽样及其在R语言中的实现与验证
DAT|R科学与人工智能
用R探索医药数据科学r语言开发语言r-4.2.1机器学习人工智能算法
在统计学和数据科学的实际工作中,抽样方法始终扮演着至关重要的角色。如何从庞大的总体中获取具有代表性的样本,一直是数据分析过程中需要面对的核心问题之一。分层随机抽样作为一种常用的抽样方法,因其能够针对总体中的不同亚群体(层)进行有针对性的抽样,从而提高样本代表性、降低抽样误差,被广泛应用于社会调查、市场研究、医学试验等各个领域。本文旨在系统地阐述分层随机抽样的理论基础、抽样方法及其在R语言中的实现,
- 应用统计学学什么科目_统计学考研科目分别有哪些?你都知道吗
心言星愿
应用统计学学什么科目
在现实社会社会中统计学的应用范围是比较广泛的,想要报考统计学的朋友也是不再少数的,那么问题就来了关于统计学应该要学习哪一些科目呢,下面就来详细的看一下关于统计学方向具体的统计学考研科目分别有那些。首先对于统计学来讲英语政治史必然的初试科目,而专业课的考研科目具体是什么还是要看你选择的院校的实际出题情况了,所以在确定了考研科目之后一定要在在确定一下你想去的高校,以便能够更好的准备。在来看一下在学校方
- 2025 年最值得收听的 AI 播客推荐!助你轻松掌握人工智能前沿动态!
真智AI
人工智能开发语言机器学习
如今,几乎每个人都被告知需要提升技能,而当前许多组织最看重的技能之一就是人工智能(AI)。学习AI相关技能通常涉及数学、统计学和机器学习,但除此之外,你还需要了解行业趋势、业内人士的观点以及各大公司的动态。然而,学习并不意味着时刻都要埋头苦读!有时候,你需要给大脑一个喘息的机会,同时依然能获取有价值的信息。而收听AI相关的播客,就是一个轻松高效的方式。以下是2025年你必须关注的AI播客!1.Th
- 智商测试原理全解析:从心理学到统计学,一文读懂(包含数据接口
2401_84193787
职场发展职场和发展求职招聘单一职责原则
智力测验(IntelligenceTest)是有关人的普通心智功能的各种测验的总称,又称普通能力测验。编制这类测验的目的是为了综合评定人的智力水平。早期编制的智力测验多采取个人测验的形式,这是单独评估心智功能的最好方法。国际上常用的个人智力测验主要有两种:斯坦福-比奈智力量表和韦克斯勒智力量表。现在常用测验包括:比奈-西蒙智力量表、韦克斯勒智力量表、斯坦福一比奈智力量表、瑞文标准智力测验、军队甲种
- 23章11节:自助抽样及其在R语言中的实现与验证
DAT|R科学与人工智能
用R探索医药数据科学r语言开发语言r-4.2.1microsoft信息可视化
在统计学中,数据分析的核心任务之一是如何在样本数据的基础上推断总体的性质。传统方法往往依赖于已知的概率分布假设和解析推导,但在现实问题中,我们往往无法准确得知总体分布,或者数据样本量较小,难以满足经典统计推断方法的要求。自助抽样作为一种非参数的计算方法,为我们提供了基于样本数据“自我重复”构建抽样分布的途径。1977年,斯坦福大学的B.Efron在著名论文《BootstrapMethods:Ano
- ANOVA:在Python中构建和理解ANOVA(方差分析)
python收藏家
python数据科学python
ANOVA(方差分析)是一种统计技术,用于确定三个或更多独立(不相关)组的平均值之间是否存在任何统计学显著差异。它有助于检验关于组间均值差异的假设,在比较多个组时特别有用。在Python中,可以使用scipy.stats模块中的f_oneway函数来执行单因素方差分析(one-wayANOVA),或者使用statsmodels库中的ANOVA类来进行更复杂的方差分析。重要概念总体均值(Popula
- 【人工智能数学基础】——深入详解贝叶斯理论:掌握贝叶斯定理及其在分类和预测中的应用
猿享天开
人工智能数学基础专讲分类数据挖掘人工智能贝叶斯数学
深入详解贝叶斯理论:掌握贝叶斯定理及其在分类和预测中的应用贝叶斯理论(BayesianTheory)是概率论和统计学中的一个重要分支,它以托马斯·贝叶斯(ThomasBayes)命名,主要关注如何根据新的证据更新对某一事件的信念。贝叶斯定理作为贝叶斯理论的核心,在机器学习、数据分析、决策科学等多个领域中具有广泛的应用。本文将深入探讨贝叶斯定理的理论基础、数学表达及其在分类和预测中的应用,辅以实例和
- R语言将向量数据按照行方式转化为矩阵数据(设置参数byrow为TRUE)
sdgfbhgfj
R语言初见机器学习数据挖掘人工智能数据分析r语言
R语言将向量数据按照行方式转化为矩阵数据(设置参数byrow为TRUE)目录R语言将向量数据按照行方式转化为矩阵数据(设置参数byrow为TRUE)R语言是解决什么问题的?R语言将向量数据按照行方式转化为矩阵数据(设置参数byrow为TRUE)安利一个R语言的优秀博主及其CSDN专栏:R语言是解决什么问题的?R是一个有着统计分析功能及强大作图功能的软件系统,是由奥克兰大学统计学系的RossIhak
- 机器学习数学基础:29.t检验
@心都
机器学习人工智能
一、t检验的定义与核心思想(一)定义t检验(Student’st-test)是一种在统计学领域中广泛应用的基于t分布的统计推断方法。其主要用途在于判断样本均值与总体均值之间,或者两个独立样本的均值之间、配对样本的均值之间是否存在显著差异。例如,在教育研究中,可以通过t检验判断某个班级学生的平均成绩与全校学生的平均成绩是否有显著差异;在医学实验里,可用于比较实验组和对照组的患者某项生理指标的均值是否
- 深度学习和机器学习的差异
The god of big data
教程深度学习机器学习人工智能
一、技术架构的本质差异传统机器学习(MachineLearning)建立在统计学和数学优化基础之上,其核心技术是通过人工设计的特征工程(FeatureEngineering)构建模型。以支持向量机(SVM)为例,算法通过核函数将数据映射到高维空间,但特征提取完全依赖工程师的领域知识。这种"人工特征+浅层模型"的结构在面对复杂非线性关系时容易遭遇性能瓶颈。深度学习(DeepLearning)作为机器
- 支持向量机 SVM 简要介绍
_夜空的繁星_
机器学习svm支持向量机拉格朗日对偶机器学习
那些我从来没有理解过的概念(1)下面是我在学习过程中遇到的对我很难理解的概念和我抄下来的笔记主要资料来源:《统计学习方法》,维基百科拉格朗日对偶问题是什么假设f(x),ci(x),hj(x)是定义在Rn上的连续可微函数,考虑以下最优化问题:$$\min_{x\inR^n}{f(x)}\c_i(x)\leq0,i=1,2,\dots,k\h_j(x)=0,j=1,2,\dots,l$$是一个凸优化问
- 【练习】PAT 乙 1061 判断题
柠石榴
PAT题解输入输出算法c++
题目判断题的评判很简单,本题就要求你写个简单的程序帮助老师判题并统计学生们判断题的得分。输入格式:输入在第一行给出两个不超过100的正整数N和M,分别是学生人数和判断题数量。第二行给出M个不超过5的正整数,是每道题的满分值。第三行给出每道题对应的正确答案,0代表“非”,1代表“是”。随后N行,每行给出一个学生的解答。数字间均以空格分隔。输出格式:按照输入的顺序输出每个学生的得分,每个分数占一行。输
- 总体方差和样本方差
然后就去远行吧
疑难杂症
在统计描述中,方差用来计算每一个变量*(观察值)与总体均数之间的差异。为避免出现离均差总和为零,离均差平方和受样本含量的影响,统计学采用平均离均差平方和来描述变量的变异程度。总体方差计算公式:σ2=∑(X−μ)2N\sigma^2=\frac{\sum(X-\mu)^2}{N}σ2=N∑(X−μ)2公式中σ2\sigma^2σ2为总体方差,XXX为变量,μ\muμ为总体均值,NNN为总体例数。在实
- 利用R语言irr包计算ICC值(组内相关系数)
mlhylzqwxli
r语言
ICC值是一个较为陌生的概念,在统计学中应用较多,引用百度百科的介绍:组内相关系数(ICC)是衡量和评价观察者间信度(inter-observerreliability)和复测信度(test-retestreliability)的信度系数(reliabilitycoefficient)指标之一。它最先由Bartko于1966年用于测量和评价信度的大小。ICC等于个体的变异度除以总的变异度,故其值介
- 第0节 机器学习与深度学习介绍
汉堡go
李哥深度学习专栏人工智能机器学习神经网络
人工智能:能够感知、推理、行动和适应的程序机器学习:能够随着数据量的增加而不断改进性能的算法(数学上的可解释性但准确率不是百分百,灵活度不高)深度学习:机器学习的一个子集:利用多层神经网络从大量数据中进行学习(设计一个很深的网络架构让机器自己学)(深度学习就是找一个函数f)机器学习算法简介(狭义)一般是基于数学,或者统计学的方法,具有很强的可解释性经典传统机器学习算法:KNN、决策树、朴素贝叶斯一
- 016.3月夏令营:数理类
力学AI有限元
保研
016.3月夏令营:数理类:中国人民大学统计学院:http://www.eeban.com/forum.php?mod=viewthread&tid=386109北京大学化学学院第一轮:http://www.eeban.com/forum.php?m...6026&extra=page%3D1香港大学化学系夏令营:http://www.eeban.com/forum.php?mod=viewthr
- 多独立样本秩检验:Kruskal-Wallis检验
木子算法
非参数统计非参数检验概率论统计
多独立样本秩检验:Kruskal-Wallis检验的理论与实践一、引言在统计学中,当数据不满足正态分布或方差齐性假设时,传统的参数检验(如方差分析ANOVA)可能失效。此时,非参数检验方法(如秩检验)成为更可靠的选择。本文将详细介绍多独立样本秩检验的核心方法——Kruskal-Wallis检验,包括其理论基础、公式推导、案例分析及Python实现。二、理论基础1.问题定义假设我们有kkk个独立样本
- r语言手动算两个C指数p值,如何用R语言进行Pvalue显著性标记?
蒲牢森
r语言手动算两个C指数p值
作者:一只想飞的喵审稿:童蒙编辑:angelica箱线图是统计学中较常见的图形之一。这篇文章将讲述如何简单比较两组或多组的平均值,且添加显著性标记。通常情况根据显著性p值的数值大小,分为四类:(1)0.01≤p<0.05,*(2)0.001≤p<0.01,**(3)0.0001≤p<0.001,***(4)p<0.0001,****接下来会讲述三种添加显著性标记的方法。方法1-手动添加1:创建数据
- R语言广义加型模型(GAM)的运用例子及实现教程
Mrrunsen
R语言大学作业r语言开发语言
文章目录步骤1:加载所需包和数据步骤2:数据预处理步骤3:拟合广义加型模型步骤4:查看模型摘要和诊断模型摘要系数估计平滑项模型质量步骤5:预测和可视化结论广义加型模型(GeneralizedAdditiveModel,简称GAM)是一种灵活的非线性建模方法,在统计学和机器学习领域被广泛应用。GAM可以用于拟合非线性关系,适用于多个预测变量之间的复杂关系,并且可以处理连续和分类变量。本教程将向您展示
- python 统计库_《统计学习方法》 Python 库
weixin_39756540
python统计库
新建GitHub仓库仓库名为slmethod,统计学习方法(StatisticalLearningMethod)的简写Public公开仓库勾选InitializethisrepositorywithaREADME.gitignore选择Python添加MITLicensenew下载代码到本地,使用ssh协议。
[email protected]:iOSDevLog/slmethod.git
- 数据挖掘与数据分析
dundunmm
数据挖掘数据挖掘数据分析人工智能
数据挖掘和数据分析是两个密切相关但有所区别的领域,它们都涉及从数据中提取有价值的信息,但在目标、方法和技术上有所不同。数据挖掘vs.数据分析特征数据挖掘数据分析目标从大数据中自动发现知识和模式通过系统分析数据,得出有意义的结论重点数据模式的自动发现、预测模型的构建数据理解、数据清洗、数据总结、假设验证方法机器学习、聚类、回归、关联规则、深度学习等统计学方法、数据可视化、数据清理、假设检验等应用实时
- An Introduction to Statistical Learning with Applicatio
AI天才研究院
Python实战DeepSeekR1&大数据AI人工智能大模型大数据人工智能语言模型JavaPython架构设计
作者:禅与计算机程序设计艺术1.简介1.1定义统计学习(statisticallearning)是一门研究如何从数据中提取知识并应用于预测、决策或其他目的的一门学科。它是机器学习、数据挖掘、计算机视觉等领域的一个分支,是当前热门的AI方向。1.2特点数据驱动:统计学习倾向于采用结构化的数据——如表格或矩阵形式——作为输入;假设空间少:统计学习通常只考虑一种假设空间,即概率模型或概率分布;模型复杂性
- 规控算法工程师的技术图谱和学习路径
执于代码
开发者职业加速服务算法学习
规控算法工程师技术图谱与学习路径规控算法工程师(规划与控制算法工程师)是自动驾驶领域的核心岗位之一,涉及路径规划、行为决策、运动控制等多个技术模块。以下为技术图谱与学习路径的整合,结合行业需求和技术发展趋势。一、技术图谱核心模块数学基础线性代数:矩阵运算、向量空间、特征值分解(用于控制系统建模与优化)。微积分:梯度下降、泰勒展开、动态系统建模(支持控制算法推导)。概率论与统计学:贝叶斯理论、马尔可
- 推荐算法工程师的技术图谱和学习路径
执于代码
开发者职业加速服务推荐算法学习算法
推荐算法工程师的技术图谱和学习路径可以从多个维度进行概述,可以总结如下:一、技术图谱推荐算法工程师需要掌握的技术栈主要分为以下几个方面:数学基础:微积分、线性代数、概率论与统计学是推荐算法的基础,用于理解模型的数学原理和优化算法。高等数学、最优化理论、几何和图论等知识对于复杂模型的设计和优化至关重要。编程与数据结构:熟练掌握Python、Java等编程语言,具备良好的编程习惯和代码优化能力。掌握数
- 聚类分析tensorflow实例_新手必看的机器学习算法集锦(聚类篇)
道酝欣赏
继上一篇《机器学习算法之分类》中大致梳理了一遍在机器学习中常用的分类算法,类似的,这一姊妹篇中将会梳理一遍机器学习中的聚类算法,最后也会拓展一些其他无监督学习的方法供了解学习。1.机器学习机器学习是近20多年兴起的一门多领域交叉学科,它涉及到概率论、统计学、计算机科学以及软件工程等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。机器学习算法是一类能从数据中自动分析获得规律
- 数据挖掘与数据分析的区别是什么
中琛源科技
数据挖掘与数据分析两者紧密相连,具有循环递归的关系,数据分析结果需要进一步进行数据挖掘才能指导决策,而数据挖掘进行价值评估的过程也需要调整先验约束而再次进行数据分析。从分析的目的来看,数据分析一般是对历史数据进行统计学上的一些分析,数据挖掘更侧重于机器对未来的预测,一般应用于分类、聚类、推荐、关联规则等。从分析的过程来看,数据分析更侧重于统计学上面的一些方法,经过人的推理演译得到结论;数据挖掘更侧
- 线性秩检验
木子算法
非参数统计数学建模概率论
线性秩检验一、引言在统计学的广袤领域中,参数检验通常基于数据服从特定分布(如正态分布)的假设。然而,在实际场景里,数据往往并不满足这些严格假设,此时非参数检验方法便展现出独特优势。线性秩检验作为一种强大的非参数检验手段,能够在不依赖数据分布的前提下,对数据进行深入分析,探寻其中隐藏的规律与差异。本文将全方位深入剖析线性秩检验,涵盖其原理、公式推导以及实际案例应用,助力读者全面掌握这一重要的统计方法
- 【量化金融自学笔记】--开篇.基本术语及学习路径建议
花花 Show Python
量化金融自学笔记金融笔记学习
在当今这个信息爆炸的时代,金融领域正经历着一场前所未有的变革。传统的金融分析方法逐渐被更加科学、精准的量化技术所取代。量化金融,这个曾经高不可攀的领域,如今正逐渐走进大众的视野。它将数学、统计学、计算机科学与金融学深度融合,为我们提供了一种全新的视角去理解和探索金融市场的奥秘。作为一名对量化金融充满热情的自学者,我深知在这个领域中,每一步都充满了挑战与机遇。从最初对复杂数学公式的困惑,到逐渐掌握编
- 【机器学习】平均绝对误差(MAE:Mean Absolute Error)
IT古董
机器学习人工智能机器学习人工智能python
平均绝对误差(MeanAbsoluteError,MAE)是一种衡量预测值与实际值之间平均差异的统计指标。它在机器学习、统计学等领域中广泛应用,用于评估模型的预测精度。与均方误差(MSE)或均方误差根(RMSE)不同,MAE使用误差的绝对值,因此它在处理异常值时更加稳定。1.MAE的定义和公式给定预测值和真实值,MAE的公式为:其中:n是样本总数。是模型的预测值。是对应的真实值。MAE表示了预测值
- AI探索笔记:线性回归
安意诚Matrix
机器学习笔记人工智能笔记线性回归
前言写这篇博客,主要是自己来练练手。网络上教程已经是数不胜数,也都讲得非常清楚了。但自己不动手,知识和能力还是别人的。下面分别用传统方法(sklearn)和神经网络(pytorch)来解决线性回归问题。内容什么是线性回归线性回归(LinearRegression)是统计学和机器学习中最基础且广泛使用的预测模型,用于建立**自变量(输入特征)与因变量(输出目标)**之间的线性关系模型。其核心思想是通
- 解读Servlet原理篇二---GenericServlet与HttpServlet
周凡杨
javaHttpServlet源理GenericService源码
在上一篇《解读Servlet原理篇一》中提到,要实现javax.servlet.Servlet接口(即写自己的Servlet应用),你可以写一个继承自javax.servlet.GenericServletr的generic Servlet ,也可以写一个继承自java.servlet.http.HttpServlet的HTTP Servlet(这就是为什么我们自定义的Servlet通常是exte
- MySQL性能优化
bijian1013
数据库mysql
性能优化是通过某些有效的方法来提高MySQL的运行速度,减少占用的磁盘空间。性能优化包含很多方面,例如优化查询速度,优化更新速度和优化MySQL服务器等。本文介绍方法的主要有:
a.优化查询
b.优化数据库结构
- ThreadPool定时重试
dai_lm
javaThreadPoolthreadtimertimertask
项目需要当某事件触发时,执行http请求任务,失败时需要有重试机制,并根据失败次数的增加,重试间隔也相应增加,任务可能并发。
由于是耗时任务,首先考虑的就是用线程来实现,并且为了节约资源,因而选择线程池。
为了解决不定间隔的重试,选择Timer和TimerTask来完成
package threadpool;
public class ThreadPoolTest {
- Oracle 查看数据库的连接情况
周凡杨
sqloracle 连接
首先要说的是,不同版本数据库提供的系统表会有不同,你可以根据数据字典查看该版本数据库所提供的表。
select * from dict where table_name like '%SESSION%';
就可以查出一些表,然后根据这些表就可以获得会话信息
select sid,serial#,status,username,schemaname,osuser,terminal,ma
- 类的继承
朱辉辉33
java
类的继承可以提高代码的重用行,减少冗余代码;还能提高代码的扩展性。Java继承的关键字是extends
格式:public class 类名(子类)extends 类名(父类){ }
子类可以继承到父类所有的属性和普通方法,但不能继承构造方法。且子类可以直接使用父类的public和
protected属性,但要使用private属性仍需通过调用。
子类的方法可以重写,但必须和父类的返回值类
- android 悬浮窗特效
肆无忌惮_
android
最近在开发项目的时候需要做一个悬浮层的动画,类似于支付宝掉钱动画。但是区别在于,需求是浮出一个窗口,之后边缩放边位移至屏幕右下角标签处。效果图如下:
一开始考虑用自定义View来做。后来发现开线程让其移动很卡,ListView+动画也没法精确定位到目标点。
后来想利用Dialog的dismiss动画来完成。
自定义一个Dialog后,在styl
- hadoop伪分布式搭建
林鹤霄
hadoop
要修改4个文件 1: vim hadoop-env.sh 第九行 2: vim core-site.xml <configuration> &n
- gdb调试命令
aigo
gdb
原文:http://blog.csdn.net/hanchaoman/article/details/5517362
一、GDB常用命令简介
r run 运行.程序还没有运行前使用 c cuntinue 
- Socket编程的HelloWorld实例
alleni123
socket
public class Client
{
public static void main(String[] args)
{
Client c=new Client();
c.receiveMessage();
}
public void receiveMessage(){
Socket s=null;
BufferedRea
- 线程同步和异步
百合不是茶
线程同步异步
多线程和同步 : 如进程、线程同步,可理解为进程或线程A和B一块配合,A执行到一定程度时要依靠B的某个结果,于是停下来,示意B运行;B依言执行,再将结果给A;A再继续操作。 所谓同步,就是在发出一个功能调用时,在没有得到结果之前,该调用就不返回,同时其它线程也不能调用这个方法
多线程和异步:多线程可以做不同的事情,涉及到线程通知
&
- JSP中文乱码分析
bijian1013
javajsp中文乱码
在JSP的开发过程中,经常出现中文乱码的问题。
首先了解一下Java中文问题的由来:
Java的内核和class文件是基于unicode的,这使Java程序具有良好的跨平台性,但也带来了一些中文乱码问题的麻烦。原因主要有两方面,
- js实现页面跳转重定向的几种方式
bijian1013
JavaScript重定向
js实现页面跳转重定向有如下几种方式:
一.window.location.href
<script language="javascript"type="text/javascript">
window.location.href="http://www.baidu.c
- 【Struts2三】Struts2 Action转发类型
bit1129
struts2
在【Struts2一】 Struts Hello World http://bit1129.iteye.com/blog/2109365中配置了一个简单的Action,配置如下
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configurat
- 【HBase十一】Java API操作HBase
bit1129
hbase
Admin类的主要方法注释:
1. 创建表
/**
* Creates a new table. Synchronous operation.
*
* @param desc table descriptor for table
* @throws IllegalArgumentException if the table name is res
- nginx gzip
ronin47
nginx gzip
Nginx GZip 压缩
Nginx GZip 模块文档详见:http://wiki.nginx.org/HttpGzipModule
常用配置片段如下:
gzip on; gzip_comp_level 2; # 压缩比例,比例越大,压缩时间越长。默认是1 gzip_types text/css text/javascript; # 哪些文件可以被压缩 gzip_disable &q
- java-7.微软亚院之编程判断俩个链表是否相交 给出俩个单向链表的头指针,比如 h1 , h2 ,判断这俩个链表是否相交
bylijinnan
java
public class LinkListTest {
/**
* we deal with two main missions:
*
* A.
* 1.we create two joined-List(both have no loop)
* 2.whether list1 and list2 join
* 3.print the join
- Spring源码学习-JdbcTemplate batchUpdate批量操作
bylijinnan
javaspring
Spring JdbcTemplate的batch操作最后还是利用了JDBC提供的方法,Spring只是做了一下改造和封装
JDBC的batch操作:
String sql = "INSERT INTO CUSTOMER " +
"(CUST_ID, NAME, AGE) VALUES (?, ?, ?)";
- [JWFD开源工作流]大规模拓扑矩阵存储结构最新进展
comsci
工作流
生成和创建类已经完成,构造一个100万个元素的矩阵模型,存储空间只有11M大,请大家参考我在博客园上面的文档"构造下一代工作流存储结构的尝试",更加相信的设计和代码将陆续推出.........
竞争对手的能力也很强.......,我相信..你们一定能够先于我们推出大规模拓扑扫描和分析系统的....
- base64编码和url编码
cuityang
base64url
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.StringWriter;
import java.io.UnsupportedEncodingException;
- web应用集群Session保持
dalan_123
session
关于使用 memcached 或redis 存储 session ,以及使用 terracotta 服务器共享。建议使用 redis,不仅仅因为它可以将缓存的内容持久化,还因为它支持的单个对象比较大,而且数据类型丰富,不只是缓存 session,还可以做其他用途,一举几得啊。1、使用 filter 方法存储这种方法比较推荐,因为它的服务器使用范围比较多,不仅限于tomcat ,而且实现的原理比较简
- Yii 框架里数据库操作详解-[增加、查询、更新、删除的方法 'AR模式']
dcj3sjt126com
数据库
public function getMinLimit () { $sql = "..."; $result = yii::app()->db->createCo
- solr StatsComponent(聚合统计)
eksliang
solr聚合查询solr stats
StatsComponent
转载请出自出处:http://eksliang.iteye.com/blog/2169134
http://eksliang.iteye.com/ 一、概述
Solr可以利用StatsComponent 实现数据库的聚合统计查询,也就是min、max、avg、count、sum的功能
二、参数
- 百度一道面试题
greemranqq
位运算百度面试寻找奇数算法bitmap 算法
那天看朋友提了一个百度面试的题目:怎么找出{1,1,2,3,3,4,4,4,5,5,5,5} 找出出现次数为奇数的数字.
我这里复制的是原话,当然顺序是不一定的,很多拿到题目第一反应就是用map,当然可以解决,但是效率不高。
还有人觉得应该用算法xxx,我是没想到用啥算法好...!
还有觉得应该先排序...
还有觉
- Spring之在开发中使用SpringJDBC
ihuning
spring
在实际开发中使用SpringJDBC有两种方式:
1. 在Dao中添加属性JdbcTemplate并用Spring注入;
JdbcTemplate类被设计成为线程安全的,所以可以在IOC 容器中声明它的单个实例,并将这个实例注入到所有的 DAO 实例中。JdbcTemplate也利用了Java 1.5 的特定(自动装箱,泛型,可变长度
- JSON API 1.0 核心开发者自述 | 你所不知道的那些技术细节
justjavac
json
2013年5月,Yehuda Katz 完成了JSON API(英文,中文) 技术规范的初稿。事情就发生在 RailsConf 之后,在那次会议上他和 Steve Klabnik 就 JSON 雏形的技术细节相聊甚欢。在沟通单一 Rails 服务器库—— ActiveModel::Serializers 和单一 JavaScript 客户端库——&
- 网站项目建设流程概述
macroli
工作
一.概念
网站项目管理就是根据特定的规范、在预算范围内、按时完成的网站开发任务。
二.需求分析
项目立项
我们接到客户的业务咨询,经过双方不断的接洽和了解,并通过基本的可行性讨论够,初步达成制作协议,这时就需要将项目立项。较好的做法是成立一个专门的项目小组,小组成员包括:项目经理,网页设计,程序员,测试员,编辑/文档等必须人员。项目实行项目经理制。
客户的需求说明书
第一步是需
- AngularJs 三目运算 表达式判断
qiaolevip
每天进步一点点学习永无止境众观千象AngularJS
事件回顾:由于需要修改同一个模板,里面包含2个不同的内容,第一个里面使用的时间差和第二个里面名称不一样,其他过滤器,内容都大同小异。希望杜绝If这样比较傻的来判断if-show or not,继续追究其源码。
var b = "{{",
a = "}}";
this.startSymbol = function(a) {
- Spark算子:统计RDD分区中的元素及数量
superlxw1234
sparkspark算子Spark RDD分区元素
关键字:Spark算子、Spark RDD分区、Spark RDD分区元素数量
Spark RDD是被分区的,在生成RDD时候,一般可以指定分区的数量,如果不指定分区数量,当RDD从集合创建时候,则默认为该程序所分配到的资源的CPU核数,如果是从HDFS文件创建,默认为文件的Block数。
可以利用RDD的mapPartitionsWithInd
- Spring 3.2.x将于2016年12月31日停止支持
wiselyman
Spring 3
Spring 团队公布在2016年12月31日停止对Spring Framework 3.2.x(包含tomcat 6.x)的支持。在此之前spring团队将持续发布3.2.x的维护版本。
请大家及时准备及时升级到Spring
- fis纯前端解决方案fis-pure
zccst
JavaScript
作者:zccst
FIS通过插件扩展可以完美的支持模块化的前端开发方案,我们通过FIS的二次封装能力,封装了一个功能完备的纯前端模块化方案pure。
1,fis-pure的安装
$ fis install -g fis-pure
$ pure -v
0.1.4
2,下载demo到本地
git clone https://github.com/hefangshi/f