BZOJ 1834: [ZJOI2010]network 网络扩容(最大流+最小费用最大流)

第一问直接跑最大流.然后将所有边再加一次,费用为扩容费用,容量为k,再从一个超级源点连一条容量为k,费用为0的边到原源点,从原汇点连一条同样的边到超级汇点,然  后跑最小费用最大流就OK了.

------------------------------------------------------------------------------------

#include<cstdio>
#include<cstring>
#include<iostream>
#include<vector>
#include<algorithm>
#include<queue>
 
#define rep(i,n) for(int i=0;i<n;++i)
#define clr(x,c) memset(x,c,sizeof(x))
#define Rep(i,l,r) for(int i=l;i<r;++i)
 
using namespace std;
 
const int maxn=1005,maxm=5005;
const int inf=0x7fffffff;
 
vector<int> g[maxn];
int d[maxn];
int cur[maxn];
int num[maxn];
int p[maxn];
int a[maxn];
int inq[maxn];
int u[maxm],v[maxm],c[maxm];
int n,m,s,t,k;
 
struct Edge {
int from,to,cap,flow,cost;
Edge(int u,int v,int c,int f,int w):
from(u),to(v),cap(c),flow(f),cost(w) {}
};
 
vector<Edge> edges;
 
void addEdge(int u,int v,int cap,int cost) {
edges.push_back( (Edge) {u,v,cap,0,cost} );
edges.push_back( (Edge) {v,u,0,0,-cost} );
int M=edges.size();
g[u].push_back(M-2);
g[v].push_back(M-1);
}
 
int augment() {
int a=inf,x=t;
while(x!=s) {
Edge &e=edges[p[x]];
a=min(a,e.cap-e.flow);
x=e.from;
}
x=t;
while(x!=s) {
Edge &e=edges[p[x]];
e.flow+=a;
edges[p[x]^1].flow-=a;
x=e.from;
}
return a;
}
 
int maxFlow() {
int flow=0;
clr(d,0); clr(cur,0); clr(num,0);
num[0]=n;
int x=s;
while(d[s]<n) {
if(x==t) {
flow+=augment();
x=s;
}
int ok=0;
Rep(i,cur[x],g[x].size()) {
Edge &e=edges[g[x][i]];
if(e.cap>e.flow && d[e.to]+1==d[x]) {
ok=1;
cur[x]=i;
p[e.to]=g[x][i];
x=e.to;
break;
}
}
if(!ok) {
int M=n-1;
rep(i,g[x].size()) {
Edge &e=edges[g[x][i]];
if(e.cap>e.flow) M=min(M,d[e.to]);
}
if(--num[d[x]]==0) break;
num[d[x]=M+1]++;
cur[x]=0;
if(x!=s) x=edges[p[x]].from;
}
}
return flow;
}
 
bool spfa(int &flow,int &cost) {
rep(i,n) d[i]=inf;
clr(inq,0);
d[s]=0; inq[s]=1; p[s]=0; a[s]=inf;
queue<int> q;
q.push(s);
while(!q.empty()) {
int x=q.front(); q.pop();
inq[x]=0;
rep(i,g[x].size()) {
Edge &e=edges[g[x][i]];
if(e.cap>e.flow && d[e.to]>d[x]+e.cost) {
d[e.to]=d[x]+e.cost;
p[e.to]=g[x][i];
a[e.to]=min(a[x],e.cap-e.flow);
if(!inq[e.to]) {
q.push(e.to);
inq[e.to]=1;
}
}
}
}
if(d[t]==inf) return 0;
flow+=a[t];
cost+=d[t]*a[t];
int x=t;
while(x!=s) {
Edge &e=edges[p[x]];
e.flow+=a[t];
edges[p[x]^1].flow-=a[t];
x=e.from;
}
return 1;
}
 
int minCost() {
int flow=0,cost=0;
while(spfa(flow,cost));
return cost;
}
 
void init() {
rep(i,n+2) g[i].clear();
edges.clear();
}
 
int main()
{
freopen("test.in","r",stdin);
freopen("test.out","w",stdout);
scanf("%d%d%d",&n,&m,&k);
init();
rep(i,m) {
int cap;
scanf("%d%d%d%d",&u[i],&v[i],&cap,&c[i]);
addEdge(--u[i],--v[i],cap,0);
}
s=0; t=n-1; printf("%d ",maxFlow());
rep(i,m) addEdge(u[i],v[i],k,c[i]);
addEdge(n,0,k,0); addEdge(n-1,n+1,k,0);
n+=2;
s=n-2; t=n-1; printf("%d\n",minCost());
return 0;
}

  

------------------------------------------------------------------------------------ 

1834: [ZJOI2010]network 网络扩容

Time Limit: 3 Sec   Memory Limit: 64 MB
Submit: 1854   Solved: 919
[ Submit][ Status][ Discuss]

Description

给定一张有向图,每条边都有一个容量C和一个扩容费用W。这里扩容费用是指将容量扩大1所需的费用。求: 1、 在不扩容的情况下,1到N的最大流; 2、 将1到N的最大流增加K所需的最小扩容费用。

Input

输入文件的第一行包含三个整数N,M,K,表示有向图的点数、边数以及所需要增加的流量。 接下来的M行每行包含四个整数u,v,C,W,表示一条从u到v,容量为C,扩容费用为W的边。

Output

输出文件一行包含两个整数,分别表示问题1和问题2的答案。

Sample Input

5 8 2
1 2 5 8
2 5 9 9
5 1 6 2
5 1 1 8
1 2 8 7
2 5 4 9
1 2 1 1
1 4 2 1

Sample Output

13 19
30%的数据中,N<=100
100%的数据中,N<=1000,M<=5000,K<=10

HINT

Source

 

你可能感兴趣的:(NetWork)