- VMD(变分模态分解)详解
DuHz
波的分析方法现代谱分析方法音频处理数据挖掘信号处理人工智能信息与通信数学建模
VMD(变分模态分解)详解目录前言背景及发展VMD原理与数学基础问题的提出变分框架与能量最小化中心频率与带宽定义目标函数及约束拉格朗日乘子法频域迭代更新公式VMD与EMD/EEMD/CEEMDAN等方法比较VMD算法流程主要参数的选择与影响优点与不足实际应用中需要注意的问题示例代码代码简要解读参考资料前言在信号处理、时频分析、故障诊断等诸多领域,如何将一个复杂信号进行多分量分解,进而提取到其中所包
- 人工智能之数学基础:一个小例子帮你快速搞懂极大线性无关向量组
每天五分钟玩转人工智能
机器学习深度学习之数学基础人工智能线性代数机器学习极大线性无关向量组深度学习神经网络
本文重点在上一节课程中,我们学习了线性相关和线性无关。当线性相关的时候,那么说明这组向量至少存在一个向量可以被其它向量给表示,可以被表示就说明这个向量就是可有可无的,可以被替代的,这里就涉及到极大线性无关向量组的概念了,本文对此进行学习。极大无关向量组的定义与性质定义在线性空间中,如果存在一个向量组,它满足以下两个条件:一是它本身是线性无关的;二是向量空间中的任何包含它的向量组,如果仍然保持线性无
- 机器算法之逻辑回归(Logistic Regression)详解
HappyAcmen
算法合集算法逻辑回归机器学习
一、什么是逻辑回归?逻辑回归并不是传统意义上的回归分析,而是一种用于处理二分类问题的线性模型。它通过计算样本属于某一类别的概率来进行分类,尽管名字中有“回归”二字,但它实际上是一种分类算法。简单来说,逻辑回归回答的是“这件事发生的可能性有多大”。二、逻辑回归的基本原理在讲原理之前,我们先来了解一下逻辑回归的数学基础。逻辑回归的核心是一个Logistic函数(或称为Sigmoid函数),它的公式如下
- 机器学习数学基础-定积分应用-经济问题
华东算法王(原聪明的小孩子
小孩哥解析宋浩微积分算法
定积分在经济学中的应用广泛,特别是用来解决与累积量、平均值、总收入、成本、利润等相关的问题。以下是定积分在经济学中的几个常见应用场景:1.总收入和总成本的计算在经济学中,定积分常用于计算总收入、总成本等累积量。如果给定价格函数和需求函数或供应函数,定积分可以帮助我们计算从某一数量到另一数量之间的总收入或总成本。总收入:假设某商品的价格随数量的变化而变化,价格函数为(p(x)),其中(x)表示销售的
- 【线性代数】列主元法求矩阵的逆
BlackPercy
线性代数Julialang线性代数矩阵机器学习
列主元方法是一种用于求解矩阵逆的数值方法,特别适用于在计算机上实现。其基本思想是通过高斯消元法将矩阵转换为上三角矩阵,然后通过回代求解矩阵的逆。以下是列主元方法求解矩阵AAA的逆的步骤:步骤1:初始化构造增广矩阵[A∣I][A|I][A∣I],其中III是nnn阶单位矩阵。步骤2:列主元选择对于第kkk列(k=1,2,…,nk=1,2,\ldots,nk=1,2,…,n),找到列主元,即找到iki
- 区块链的数学基础:核心原理与应用解析
一休哥助手
区块链
引言区块链技术作为分布式账本系统,成功地解决了传统中心化系统中的信任问题。其背后隐藏着复杂而精妙的数学原理,包括密码学、哈希函数、数字签名、椭圆曲线、零知识证明等。这些数学工具不仅为区块链提供了安全保障,也为智能合约和去中心化应用(DApps)的开发奠定了基础。本文将深入剖析区块链中的核心数学基础,帮助读者理解其工作原理与实际应用。一、区块链数学基础概述区块链的数学基础可以分为以下几个核心领域:密
- 为什么算法很难掌握
浅墨cgz
算法
算法之所以难以掌握,主要是因为以下几个原因:1.抽象性算法是对问题的抽象解决方案,通常不依赖于具体的编程语言或实现细节。初学者可能难以将抽象的逻辑转化为具体的代码。例如,动态规划(DP)的核心思想是将问题分解为子问题并存储中间结果,但这种抽象思维需要大量练习才能掌握。2.数学基础要求许多算法依赖于数学知识,例如:时间复杂度分析:需要理解大O表示法、递归关系等。图论算法:需要了解图的基本概念(如节点
- 数学:机器学习的理论基石
每天五分钟玩转人工智能
机器学习人工智能
一、数学:机器学习的理论基石机器学习是一种通过数据学习模式和规律的科学。其核心目标是从数据中提取有用的信息,以便对未知数据进行预测和分类。为了实现这一目标,机器学习需要一种数学框架来描述和解决问题。数学在机器学习中起着至关重要的作用,它提供了一种数学模型来描述数据和模式,以及一种数学方法来优化模型。数学在机器学习中的应用非常广泛,涵盖了线性代数、概率论、统计学、微积分、优化等多个领域。这些数学方法
- 机器学习数学基础-极值和最值
华东算法王(原聪明的小孩子
小孩哥解析宋浩微积分机器学习算法人工智能
极值和最值极值和最值是数学中关于函数变化的重要概念,它们描述了函数在某些点附近或在整个定义域内的“最大”或“最小”行为。理解极值和最值对优化问题、函数分析、物理建模等领域有重要的应用。1.极值(LocalExtrema)极值是指函数在某个区间内的某一点取得的局部最大值或最小值。(1)局部最大值(LocalMaximum)一个函数在某点(x=c)取得局部最大值,意味着存在一个包含(c)的小区间,使得
- 凸优化学习
qiaoxinyu10623
凸优化1024程序员节
认为学习凸优化理论比较合适的路径是:学习/复习线性代数和(少量)高等数学的知识。实际上,凸优化理论综合使用了线性代数和微积分的相关知识,比如方向导数,雅克比矩阵,海森矩阵,KKT条件等。这里强烈推荐MIT公开课《线性代数》,GilbertStrang教授主讲,完全不是照本宣科,而是注重几何解释,非常具有启发性,学完之后,你会对线性代数有全新的认识。学习视频:-UP主汉语配音-【线性代数的本质】合集
- 人工智能学习路线全链路解析
power-辰南
大模型算法实战工程人工智能学习机器学习
一、基础准备阶段(预计2-3个月)(一)数学知识巩固与深化线性代数(约1个月):矩阵基础:回顾矩阵的定义、表示方法、矩阵的基本运算(加法、减法、乘法),理解矩阵乘法不满足交换律等特性,通过练习题加深对运算规则的掌握,例如计算简单的矩阵乘法式子、求矩阵的转置等。向量空间与线性变换:学习向量空间的概念,包括向量的线性组合、线性相关与线性无关,掌握线性变换的定义、几何意义以及如何用矩阵表示线性变换,借助
- 【机器学习】从零开始,用线性代数解锁智能时代的钥匙!
eclipsercp
工具毕业设计python机器学习线性代数人工智能
【机器学习】从零开始,用线性代数解锁智能时代的钥匙!文章目录【机器学习】从零开始,用线性代数解锁智能时代的钥匙!引言在这个数据驱动的时代,机器学习已经成为解锁智能科技的关键。但你是否曾被复杂的数学公式和算法搞得晕头转向?别担心,这篇文章将带你从零开始,用最直观的方式掌握线性代数——机器学习的核心武器!线性代数:机器学习的基石向量:数据的基本单元Python代码示例:向量操作矩阵:多维数据的集合Py
- 视觉SLAM学习打卡【8-1】-视觉里程计·直接法
肝帝永垂不朽
#SLAM计算机视觉opencvc++
本节直接法与上节特征点法,为视觉里程计估计位姿的两大主流方法。而在引出直接法前,先介绍光流法(二者均对灰度值I做文章)。至此,前端VO总算结束了。学下来一个感受就是前几章的数学基础很重要,尤其是构建最小二乘的非线性优化(BA),几乎每种方法都有其一席之地。视觉SLAM学习打卡【8-1】-视觉里程计·直接法一、光流法(1)前提(实际中较难满足)(2)理论推导(3)附:超定方程求解二、直接法(1)理论
- 【树一线性代数】005入门
Owlet_woodBird
算法
Index本文稍后补全,推荐阅读:https://blog.csdn.net/weixin_60702024/article/details/141874376分析实现总结本文稍后补全,推荐阅读:https://blog.csdn.net/weixin_60702024/article/details/141874376已知非空二叉树T的结点值均为正整数,采用顺序存储方式保存,数据结构定义如下:t
- 如何有效的学习AI大模型?
Python程序员罗宾
学习人工智能语言模型自然语言处理架构
学习AI大模型是一个系统性的过程,涉及到多个学科的知识。以下是一些建议,帮助你更有效地学习AI大模型:基础知识储备:数学基础:学习线性代数、概率论、统计学和微积分等,这些是理解机器学习算法的数学基础。编程技能:掌握至少一种编程语言,如Python,因为大多数AI模型都是用Python实现的。理论学习:机器学习基础:了解监督学习、非监督学习、强化学习等基本概念。深度学习:学习神经网络的基本结构,如卷
- 群体遗传分析(一)#学习笔记
kangroomoon
哈温的遗传平衡定律是基础,费、莱、霍的群体遗传学是数学基础和理论框架,木村资生的中性进化论深化了自然选择的概念。中性学说认为:分子水平上的遗传变异在很大程度上是中性的,变异程度主要由突变速率和有效群体大小决定。(通过观察值和理论值之间的差异性测验中性进化假说)群体遗传多态性与结构分析Locus:遗传座位,在群体中通常包含多个allele:等位基因,即遗传多态性。大多数的新突变是由于geneticd
- 几何分布的期望和方差公式推导_算法数学基础-统计学最基础之均值、方差、协方差、矩...
weixin_39848097
几何分布的期望和方差公式推导均值定理六个公式概率论方差公式
我们天天都可以接触很多随机现象,比如每天的天气不一样气温是我们最直接的感受,我们很难预测明天的精确问题,但是这些随机现象又体现出了一定的规律性。比如上海7月份平均35度左右,冬天的平均温度在5度左右。所以35、5这些数字体现了某种稳定性。所以除了前面几章中讲到的分布律和概率密度函数可以表征随机变量外,还可以用一组数字来表达随机变量的一般特性。这就是我们今天要讲到的随机变量的数字特征。通过对数字特征
- 每日小计划
小糊涂神
活到老学到老到,学习永无止境,我坚持每天学习,我的学习计划如下:1.每天学习五个英语单词,和正在学习英语的儿子共同进步,方便辅导他。2.学习一节统计学或者一节线性代数课程,在此基础上进一步学习数据的处理软件。3.每天微信步数达到1万步,每天饭后过一下二人世界,不到沟通感情,而且还能强身健体!4.学习两节税务师课件,中级会计师已经通过,距离考高级还有几年,空档期考取税务师,充实自己的专业知识。5.坚
- CTF 竞赛密码学方向学习路径规划
David Max
CTF学习笔记密码学ctf信息安全
目录计算机科学基础计算机科学概念的引入、兴趣的引导开发环境的配置与常用工具的安装WattToolkit(Steam++)、机场代理Scoop(Windows用户可选)常用Python库SageMathLinux小工具yafuOpenSSLMarkdown编程基础Python其他编程语言、算法与数据结构(可选)数学基础离散数学与抽象代数复杂性分析密码学的正式学习兴趣的培养做题小技巧系统学习需要了解并
- 深度学习算法,该如何深入,举例说明
liyy614
深度学习
深度学习算法的深入学习可以从理论和实践两个方面进行。理论上,深入理解深度学习需要掌握数学基础(如线性代数、概率论、微积分)、机器学习基础和深度学习框架原理。实践上,可以通过实现和优化深度学习模型来提升技能。理论深入数学基础线性代数:理解向量、矩阵、特征值和特征向量等,对于理解神经网络的权重和偏置矩阵至关重要。概率论:用于理解模型的不确定性,如Dropout等正则化技术。微积分:理解梯度下降等优化算
- 非理工科院校怎么打好数学建模比赛 | 南川笔记
南川笔记
Proposition1非理工科院校最好不要打数学建模比赛。虽说“一次建模,终身受益”,但毕竟数学建模既要数学理论的支撑(不仅仅是大学里的微积分、线性代数和概率论与统计,更多的是基于微积分的常偏微分方程、基于线性代数的运筹学和基于概率论与统计的统计分析内容),还要编程的支撑(不是常规的C语言或者Java程序,也不是这几年很火的Python编程,而是基于数值运算的Matlab和基于统计的R),这在一
- 【鼠鼠学AI代码合集#5】线性代数
鼠鼠龙年发大财
鼠鼠学AI系列代码合集人工智能线性代数机器学习
在前面的例子中,我们已经讨论了标量的概念,并展示了如何使用代码对标量进行基本的算术运算。接下来,我将进一步说明该过程,并解释每一步的实现。标量(Scalar)的基本操作标量是只有一个元素的数值。它可以是整数、浮点数等。通过下面的Python代码,我们可以很容易地进行标量的加法、乘法、除法和指数运算。代码实现:importtorch#定义两个标量x=torch.tensor(3.0)#标量x,值为3
- 数学基础 -- 线性代数正交多项式之勒让德多项式展开推导
sz66cm
线性代数决策树算法
勒让德多项式展开的详细过程勒让德多项式是一类在区间[−1,1][-1,1][−1,1]上正交的多项式,可以用来逼近函数。我们可以将一个函数表示为勒让德多项式的线性组合。以下是如何推导勒让德多项式展开系数ana_nan的详细过程。1.勒让德展开的基本假设给定一个函数f(x)f(x)f(x),我们希望将它表示为勒让德多项式的线性组合:f(x)=∑n=0∞anPn(x),f(x)=\sum_{n=0}^
- 线性代数基础
wq_151
mathematic线性代数
Base对于矩阵A,对齐做SVD分解,即UΣV=svd(A)U\SigmaV=svd(A)UΣV=svd(A).其中U为AATAA^TAAT的特征向量,V为ATAA^TAATA的特征向量。Σ\SigmaΣ的对角元素为降序排序的特征值。显然,U、V矩阵中的列向量相互正交,所以也可以视V为svd分解给出了A的列向量空间的正交基,其中最大奇异值(或特征值)对应的特征向量捕捉了数据变化的最大方向。求满足A
- 2022考研数学李永乐复习全书pdf版-基础篇(数一二三通用)
面包资料屋
考研数学
2022考研数学李永乐复习全书pdf版-基础篇(数一二三通用):https://pan.baidu.com/s/1tK9cPPG5Q-xhasqb051ymQ提取码:1111本书是专门为准备参加硕士研究生入学考试提前复习的大二大三学生、在职考研人士及基础薄弱的考生编写。本书以初等数学水平为起点,阐述了考研数学要求的基本知识构架。希望本书能够帮助考生在短时间内厘清考研数学(包括高等数学、线性代数、概
- 线性代数|机器学习-P33卷积神经网络ImageNet和卷积规则
取个名字真难呐
算法机器学习矩阵人工智能线性代数
文章目录1.ImageNet2.卷积计算2.1两个多项式卷积2.2函数卷积2.3循环卷积3.周期循环矩阵和非周期循环矩阵4.循环卷积特征值4.1卷积计算的分解4.2运算量4.3二维卷积公式5.KroneckerProduct1.ImageNetImageNet的论文paper链接如下:详细请直接阅读相关论文即可通过网盘分享的文件:imagenet_cvpr09.pdf链接:https://pan.
- Python的图形化界面编程
iteye_20668
Pythonpython
2017.2.14好久没有写代码了,感觉过一个年弄的什么也没有干成,好像看了下c++,突然发现现在来看C++,要简单了好多,并且指针也没有那么难了,然后就是看了下机器学习,感觉有点小难,现在发现好多都涉及到高数,概率论和线性代数的知识,想想当初把这些学的是一塌糊涂。然后上次和胡杨大大聊天的时候,他说好多东西都是在实践中去学习的。好了,继续我的Python吧,Python的图形化界面编程。impor
- matlab初等变换函数,线性代数实践及 MATLAB 入门(2005年10月)
weixin_39861905
matlab初等变换函数
出版时间:2005-10-1作者:陈怀琛,龚杰民编著出版社:电子工业出版社程序集名为dsk05,课件名bk05课件内容简介本书是根据“用软件工具提高线性代数教学”的指导思想,参照美国1992—1997国家科学基金项目ATLAST的思路,编写成的线性代数补充教材,其目的是补充我国现有教材的的缺陷。它分为两篇,第一篇介绍线性代数所用的软件工具MATLAB语言,它可以作为教材,也可以作为手册使用;第二篇
- matlab线性代数电子书,实用大众线性代数 MATLAB版_13652907.pdf
三金乐了
matlab线性代数电子书
【作者】陈怀琛著【形态项】156【出版项】西安:西安电子科技大学出版社,2014.08【ISBN号】978-7-5606-3462-3【中图法分类号】O151.2【原书定价】20.00【主题词】线性代数-计算机辅助设计-MATLAB软件【参考文献格式】陈怀琛著.实用大众线性代数MATLAB版.西安:西安电子科技大学出版社,2014.08.内容提要:传统的线性代数源于数学家,教理论不教应用。工科需要
- 数学基础 -- 线性代数之格拉姆-施密特正交化
sz66cm
线性代数机器学习人工智能
格拉姆-施密特正交化格拉姆-施密特正交化(Gram-SchmidtOrthogonalization)是一种将一组线性无关的向量转换为一组两两正交向量的算法。通过该过程,我们能够从原始向量组中构造正交基,并且可以选择归一化使得向量组成为标准正交基。算法步骤假设我们有一组线性无关的向量{v1,v2,…,vn}\{v_1,v_2,\dots,v_n\}{v1,v2,…,vn},其目标是将这些向量正交化
- 二分查找排序算法
周凡杨
java二分查找排序算法折半
一:概念 二分查找又称
折半查找(
折半搜索/
二分搜索),优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而 查找频繁的有序列表。首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表 分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步
- java中的BigDecimal
bijian1013
javaBigDecimal
在项目开发过程中出现精度丢失问题,查资料用BigDecimal解决,并发现如下这篇BigDecimal的解决问题的思路和方法很值得学习,特转载。
原文地址:http://blog.csdn.net/ugg/article/de
- Shell echo命令详解
daizj
echoshell
Shell echo命令
Shell 的 echo 指令与 PHP 的 echo 指令类似,都是用于字符串的输出。命令格式:
echo string
您可以使用echo实现更复杂的输出格式控制。 1.显示普通字符串:
echo "It is a test"
这里的双引号完全可以省略,以下命令与上面实例效果一致:
echo Itis a test 2.显示转义
- Oracle DBA 简单操作
周凡杨
oracle dba sql
--执行次数多的SQL
select sql_text,executions from (
select sql_text,executions from v$sqlarea order by executions desc
) where rownum<81;
&nb
- 画图重绘
朱辉辉33
游戏
我第一次接触重绘是编写五子棋小游戏的时候,因为游戏里的棋盘是用线绘制的,而这些东西并不在系统自带的重绘里,所以在移动窗体时,棋盘并不会重绘出来。所以我们要重写系统的重绘方法。
在重写系统重绘方法时,我们要注意一定要调用父类的重绘方法,即加上super.paint(g),因为如果不调用父类的重绘方式,重写后会把父类的重绘覆盖掉,而父类的重绘方法是绘制画布,这样就导致我们
- 线程之初体验
西蜀石兰
线程
一直觉得多线程是学Java的一个分水岭,懂多线程才算入门。
之前看《编程思想》的多线程章节,看的云里雾里,知道线程类有哪几个方法,却依旧不知道线程到底是什么?书上都写线程是进程的模块,共享线程的资源,可是这跟多线程编程有毛线的关系,呜呜。。。
线程其实也是用户自定义的任务,不要过多的强调线程的属性,而忽略了线程最基本的属性。
你可以在线程类的run()方法中定义自己的任务,就跟正常的Ja
- linux集群互相免登陆配置
林鹤霄
linux
配置ssh免登陆
1、生成秘钥和公钥 ssh-keygen -t rsa
2、提示让你输入,什么都不输,三次回车之后会在~下面的.ssh文件夹中多出两个文件id_rsa 和 id_rsa.pub
其中id_rsa为秘钥,id_rsa.pub为公钥,使用公钥加密的数据只有私钥才能对这些数据解密 c
- mysql : Lock wait timeout exceeded; try restarting transaction
aigo
mysql
原文:http://www.cnblogs.com/freeliver54/archive/2010/09/30/1839042.html
原因是你使用的InnoDB 表类型的时候,
默认参数:innodb_lock_wait_timeout设置锁等待的时间是50s,
因为有的锁等待超过了这个时间,所以抱错.
你可以把这个时间加长,或者优化存储
- Socket编程 基本的聊天实现。
alleni123
socket
public class Server
{
//用来存储所有连接上来的客户
private List<ServerThread> clients;
public static void main(String[] args)
{
Server s = new Server();
s.startServer(9988);
}
publi
- 多线程监听器事件模式(一个简单的例子)
百合不是茶
线程监听模式
多线程的事件监听器模式
监听器时间模式经常与多线程使用,在多线程中如何知道我的线程正在执行那什么内容,可以通过时间监听器模式得到
创建多线程的事件监听器模式 思路:
1, 创建线程并启动,在创建线程的位置设置一个标记
2,创建队
- spring InitializingBean接口
bijian1013
javaspring
spring的事务的TransactionTemplate,其源码如下:
public class TransactionTemplate extends DefaultTransactionDefinition implements TransactionOperations, InitializingBean{
...
}
TransactionTemplate继承了DefaultT
- Oracle中询表的权限被授予给了哪些用户
bijian1013
oracle数据库权限
Oracle查询表将权限赋给了哪些用户的SQL,以备查用。
select t.table_name as "表名",
t.grantee as "被授权的属组",
t.owner as "对象所在的属组"
- 【Struts2五】Struts2 参数传值
bit1129
struts2
Struts2中参数传值的3种情况
1.请求参数绑定到Action的实例字段上
2.Action将值传递到转发的视图上
3.Action将值传递到重定向的视图上
一、请求参数绑定到Action的实例字段上以及Action将值传递到转发的视图上
Struts可以自动将请求URL中的请求参数或者表单提交的参数绑定到Action定义的实例字段上,绑定的规则使用ognl表达式语言
- 【Kafka十四】关于auto.offset.reset[Q/A]
bit1129
kafka
I got serveral questions about auto.offset.reset. This configuration parameter governs how consumer read the message from Kafka when there is no initial offset in ZooKeeper or
- nginx gzip压缩配置
ronin47
nginx gzip 压缩范例
nginx gzip压缩配置 更多
0
nginx
gzip
配置
随着nginx的发展,越来越多的网站使用nginx,因此nginx的优化变得越来越重要,今天我们来看看nginx的gzip压缩到底是怎么压缩的呢?
gzip(GNU-ZIP)是一种压缩技术。经过gzip压缩后页面大小可以变为原来的30%甚至更小,这样,用
- java-13.输入一个单向链表,输出该链表中倒数第 k 个节点
bylijinnan
java
two cursors.
Make the first cursor go K steps first.
/*
* 第 13 题:题目:输入一个单向链表,输出该链表中倒数第 k 个节点
*/
public void displayKthItemsBackWard(ListNode head,int k){
ListNode p1=head,p2=head;
- Spring源码学习-JdbcTemplate queryForObject
bylijinnan
javaspring
JdbcTemplate中有两个可能会混淆的queryForObject方法:
1.
Object queryForObject(String sql, Object[] args, Class requiredType)
2.
Object queryForObject(String sql, Object[] args, RowMapper rowMapper)
第1个方法是只查
- [冰川时代]在冰川时代,我们需要什么样的技术?
comsci
技术
看美国那边的气候情况....我有个感觉...是不是要进入小冰期了?
那么在小冰期里面...我们的户外活动肯定会出现很多问题...在室内呆着的情况会非常多...怎么在室内呆着而不发闷...怎么用最低的电力保证室内的温度.....这都需要技术手段...
&nb
- js 获取浏览器型号
cuityang
js浏览器
根据浏览器获取iphone和apk的下载地址
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" content="text/html"/>
<meta name=
- C# socks5详解 转
dalan_123
socketC#
http://www.cnblogs.com/zhujiechang/archive/2008/10/21/1316308.html 这里主要讲的是用.NET实现基于Socket5下面的代理协议进行客户端的通讯,Socket4的实现是类似的,注意的事,这里不是讲用C#实现一个代理服务器,因为实现一个代理服务器需要实现很多协议,头大,而且现在市面上有很多现成的代理服务器用,性能又好,
- 运维 Centos问题汇总
dcj3sjt126com
云主机
一、sh 脚本不执行的原因
sh脚本不执行的原因 只有2个
1.权限不够
2.sh脚本里路径没写完整。
二、解决You have new mail in /var/spool/mail/root
修改/usr/share/logwatch/default.conf/logwatch.conf配置文件
MailTo =
MailFrom
三、查询连接数
- Yii防注入攻击笔记
dcj3sjt126com
sqlWEB安全yii
网站表单有注入漏洞须对所有用户输入的内容进行个过滤和检查,可以使用正则表达式或者直接输入字符判断,大部分是只允许输入字母和数字的,其它字符度不允许;对于内容复杂表单的内容,应该对html和script的符号进行转义替换:尤其是<,>,',"",&这几个符号 这里有个转义对照表:
http://blog.csdn.net/xinzhu1990/articl
- MongoDB简介[一]
eksliang
mongodbMongoDB简介
MongoDB简介
转载请出自出处:http://eksliang.iteye.com/blog/2173288 1.1易于使用
MongoDB是一个面向文档的数据库,而不是关系型数据库。与关系型数据库相比,面向文档的数据库不再有行的概念,取而代之的是更为灵活的“文档”模型。
另外,不
- zookeeper windows 入门安装和测试
greemranqq
zookeeper安装分布式
一、序言
以下是我对zookeeper 的一些理解: zookeeper 作为一个服务注册信息存储的管理工具,好吧,这样说得很抽象,我们举个“栗子”。
栗子1号:
假设我是一家KTV的老板,我同时拥有5家KTV,我肯定得时刻监视
- Spring之使用事务缘由(2-注解实现)
ihuning
spring
Spring事务注解实现
1. 依赖包:
1.1 spring包:
spring-beans-4.0.0.RELEASE.jar
spring-context-4.0.0.
- iOS App Launch Option
啸笑天
option
iOS 程序启动时总会调用application:didFinishLaunchingWithOptions:,其中第二个参数launchOptions为NSDictionary类型的对象,里面存储有此程序启动的原因。
launchOptions中的可能键值见UIApplication Class Reference的Launch Options Keys节 。
1、若用户直接
- jdk与jre的区别(_)
macroli
javajvmjdk
简单的说JDK是面向开发人员使用的SDK,它提供了Java的开发环境和运行环境。SDK是Software Development Kit 一般指软件开发包,可以包括函数库、编译程序等。
JDK就是Java Development Kit JRE是Java Runtime Enviroment是指Java的运行环境,是面向Java程序的使用者,而不是开发者。 如果安装了JDK,会发同你
- Updates were rejected because the tip of your current branch is behind
qiaolevip
学习永无止境每天进步一点点众观千象git
$ git push joe prod-2295-1
To
[email protected]:joe.le/dr-frontend.git
! [rejected] prod-2295-1 -> prod-2295-1 (non-fast-forward)
error: failed to push some refs to '
[email protected]
- [一起学Hive]之十四-Hive的元数据表结构详解
superlxw1234
hivehive元数据结构
关键字:Hive元数据、Hive元数据表结构
之前在 “[一起学Hive]之一–Hive概述,Hive是什么”中介绍过,Hive自己维护了一套元数据,用户通过HQL查询时候,Hive首先需要结合元数据,将HQL翻译成MapReduce去执行。
本文介绍一下Hive元数据中重要的一些表结构及用途,以Hive0.13为例。
文章最后面,会以一个示例来全面了解一下,
- Spring 3.2.14,4.1.7,4.2.RC2发布
wiselyman
Spring 3
Spring 3.2.14、4.1.7及4.2.RC2于6月30日发布。
其中Spring 3.2.1是一个维护版本(维护周期到2016-12-31截止),后续会继续根据需求和bug发布维护版本。此时,Spring官方强烈建议升级Spring框架至4.1.7 或者将要发布的4.2 。
其中Spring 4.1.7主要包含这些更新内容。