P问题、NP问题、NP-complete和NP-hard问题的简单理解

  • 储备知识:
    • 多项式时间可解的问题:如果对于某个确定的常数k,存在一个能在O(nk)时间内求解出某具体问题的算法,就说该具体问题是一个多项式时间可解问题
    • 多项式时间内可被验证的问题:是一个判定问题,答案只有是或否。例如,存在某具体问题,我们猜想该问题有一个可行解x,如果对于某个确定的常数k,存在一个能在O(nk)时间内验证x是否是该具体问题可行解的算法,就说该具体问题是一个多项式时间可被验证的问题

一般来说,大家往往将多项式时间内可解的问题称作易处理的问题,将超多项式时间内解决的问题称作不易处理的问题。
P问题、NP问题、NP-complete和NP-hard问题的简单理解_第1张图片
左图在假设P≠NP的情况下有效,右图在假设P=NP的情况下有效
在假定P≠NP的情况下, 有
P问题、NP问题、NP-complete和NP-hard问题的简单理解_第2张图片

1. P问题

P问题: 可以在 多项式时间内被解决的问题。

  • 即可以在确定性图灵机上在多项式时间内找出解的问题。如果一个问题是P问题,那么毫无疑问我们可以在多项式时间内验证它。

2. NP问题

NP问题: 可以在多项式时间内被验证的问题。或者说,可以在非确定性多项式时间内被解决的问题。

  • 即可以在非确定型图灵机上在多项式时间内找出解的问题。NP问题可以在多项式时间内被验证,但是不确定是否可以在多项式时间内找出解。

3. NP-Hard问题

NP-Hard问题: 如果可以证明某问题有一个子问题是NP-Hard问题,那么该问题是一个NP-Hard问题。

  • 即已知一个NPC问题L’,如果我们可以把L’归约为L,则L是NP-Hard。通俗的讲,已经有一个很难的问题L’,而L问题比L’更难解决,那么该问题就是NP-Hard问题。NP-Hard问题不确定是否可以在多项式时间内被验证

4. NP-Complete问题

NP-Complete问题: 如果一个问题已经被证明是一个NP-Hard问题,并且可以证明该问题是一个NP问题,那么该问题是NPC问题。

  • 即已知一个NPC问题L’,如果我们可以把L’归约为L,且L可以在多项式时间内被验证,那么L是一个NPC问题。

5. 小结

  • 其中:P、 NP、 NP-Hard、NP-Complete是 不同的复杂性类,用于将所有的算法问题进行分类,以确定当前算法的难度。
  • 同时,感谢简书作者:㭍葉在网上的精彩讲解。

References:

P、NP、 NP-complete、 NP-hard问题对比

你可能感兴趣的:(物联网优化,NP问题,P问题,NP-Complete问题,NP-hard问题)