- 如果MLlib 中没有所需要的模型,如何使用 Spark 进行分布式训练?
是纯一呀
WSLDockerAIspark分布式mllib
如果MLlib中没有你所需要的模型,并且不打算结合更强大的框架(如TensorFlowOnSpark或Horovod),仍然可以使用Spark进行分布式训练,但需要手动处理训练任务的分配、数据准备、模型训练、结果合并和模型更新等过程。模型训练阶段将模型的训练任务分配到Spark集群的各个节点。数据并行:每个节点会处理数据的不同部分,并计算该部分的梯度或模型参数。自定义算法:如果使用的是自定义算法(
- 【产品经理修炼之道】- 游戏行业CRM的建设
xiaoli8748_软件开发
产品经理产品经理游戏
现在,许多企业都引入了CRM系统,并想借助这一系统来实现企业营收的增长,那么CRM系统的核心功能和核心流程究竟有哪些?游戏行业的CRM又该如何建设?这篇文章里,作者便进行了分析总结,一起来看看吧。一、前言CRM,客户关系管理系统是中台建设中最常见的一类系统。最早由IP管理咨询公司Gartner在上世纪九十年代末提出,至今已发展几十年。其以“维护企业的核心客户群体,提高客户满意度和忠诚度”为目的,是
- 使用 Docker 部署 Apache Spark 集群教程
努力的小T
dockerdockersparklinux运维服务器云计算容器
简介ApacheSpark是一个强大的统一分析引擎,用于大规模数据处理。本文将详细介绍如何使用Docker和DockerCompose快速部署一个包含一个Master节点和两个Worker节点的Spark集群。这种方法不仅简化了集群的搭建过程,还提供了资源隔离、易于扩展等优势。前置条件在开始之前,请确保你的环境中已经准备好了以下组件:安装并运行DockerEngine。安装DockerCompos
- 笔记:DataSphere Studio安装部署流程
右边com
Java大数据
一、标准版部署标准版:有一定的安装难度,体现在Hadoop、Hive和Spark版本不同时,可能需要重新编译,可能会出现包冲突问题。适合于试用和生产使用,2~3小时即可部署起来。支持的功能有:数据开发IDE-Scriptis工作流实时执行信号功能和邮件功能数据可视化-Visualis数据质量-Qualitis(单机版)工作流定时调度-Azkaban(单机版)Linkis管理台二、基础环境准备2.1
- HIVE- SPARK
流川枫_
20210706hdfshivespark
日常记录备忘Hive修改字段类型之后(varchar->string)Hive可以查到数据,Presto查询报错;分区字段数据类型和表结构字段类型不一样;spark-sql分区表和非分区表兼容问题,不能关联可以建临时表把分区数据导入,用完数据将表删除;count有数据,select没数据可能是压缩格式所导致;优化合全量任务,之前是row_number()函数先插入当天增量,取出最新的数据插入全量表
- spark为什么比mapreduce快?
程序员
作者:京东零售吴化斌spark为什么比mapreduce快?首先澄清几个误区:1:两者都是基于内存计算的,任何计算框架都肯定是基于内存的,所以网上说的spark是基于内存计算所以快,显然是错误的2;DAG计算模型减少的是磁盘I/O次数(相比于mapreduce计算模型而言),而不是shuffle次数,因为shuffle是根据数据重组的次数而定,所以shuffle次数不能减少所以总结spark比m
- spark为什么比mapreduce快?
程序员
作者:京东零售吴化斌spark为什么比mapreduce快?首先澄清几个误区:1:两者都是基于内存计算的,任何计算框架都肯定是基于内存的,所以网上说的spark是基于内存计算所以快,显然是错误的2;DAG计算模型减少的是磁盘I/O次数(相比于mapreduce计算模型而言),而不是shuffle次数,因为shuffle是根据数据重组的次数而定,所以shuffle次数不能减少所以总结spark比m
- Spark中Dataset方法详解
小巫程序Demo日记
Spark+Hadoop学习sparkajaxjava分布式
一、数据清洗核心方法1.处理缺失值方法说明示例代码na().drop()删除包含空值的行Datasetcleaned=dataset.na().drop();na().fill(value)用指定值填充所有空值Datasetfilled=dataset.na().fill(0);na().fill(Map)按列填充不同值Mapfills=newHashMapunique=dataset.dropD
- 探索大数据处理:利用 Apache Spark 解锁数据价值
Echo_Wish
实战高阶大数据apachespark大数据
探索大数据处理:利用ApacheSpark解锁数据价值大家好,我是你们熟悉的大数据领域自媒体创作者Echo_Wish。今天,我们来聊聊如何利用ApacheSpark进行大规模数据处理。ApacheSpark作为一个快速、通用的集群计算框架,以其出色的性能和丰富的API,成为大数据处理的利器。那么,ApacheSpark究竟如何帮助我们高效处理海量数据?接下来,让我们一起深入探讨。一、ApacheS
- 最新Apache Hudi 1.0.1源码编译详细教程以及常见问题处理
Toroidals
大数据组件安装部署教程hudi1.0.1源码编译教程最新
1.最新ApacheHudi1.0.1源码编译2.Flink、Spark、Hive集成Hudi1.0.13.flinkstreaming写入hudi目录1.版本介绍2.安装maven2.1.下载maven2.2.设置环境变量2.3.添加Maven镜像3.编译hudi3.1.下载hudi源码3.2.修改hudi源码3.3.修改hudi-1.0.1/pom.xml,注释或去掉410行内容3.4.安装c
- 使用Docker安装Spark集群(带有HDFS)
Sicilly_琬姗
云计算大数据dockersparkhdfs
本实验在CentOS7中完成第一部分:安装Docker这一部分是安装Docker,如果机器中已经安装过Docker,可以直接跳过[root@VM-48-22-centos~]#systemctlstopfirewalld[root@VM-48-22-centos~]#systemctldisablefirewalld[root@VM-48-22-centos~]#systemctlstatusfi
- 使用Docker部署Spark集群
小孩真笨
工程开发技术CloudDataDockerSpark
使用Docker部署Spark集群克隆包含启动脚本的git仓库启动Spark0.8.0集群并切换至SparkShell环境不带参数运行部署脚本*运行一些小的例子终止集群克隆包含启动脚本的git仓库*gitclone-bblogpostgit@github.com:amplab/docker-scripts.git当然,在这之前你必须已经配置了Github的SSH密钥认证,如果没有配置,会提示Per
- 从0开始使用Docker搭建Spark集群
吃鱼的羊
SPARKHadoop
https://www.jianshu.com/p/ee210190224f?utm_campaign=maleskine&utm_content=note&utm_medium=seo_notes&utm_source=recommendation最近在学习大数据技术,朋友叫我直接学习Spark,英雄不问出处,菜鸟不问对错,于是我就开始了Spark学习。为什么要在Docker上搭建Spark集群
- 【产品经理修炼之道】-企业级SaaS架构实战(2):架构视图与视角
xiaoli8748_软件开发
产品经理产品经理架构
企业级的SaaS系统涉及的利益干系人众多,那么该如何将其做好分类,便于快速获取相应信息?本文将介绍SaaS架构视图与视角,便于你了解相关内容,更好展开工作。把企业级SaaS系统架构描述清楚,是一项极其复杂的工作。因为企业级SaaS系统涉及的利益干系人众多,例如:客户、产品经理、研发、销售、运营、管理层等等。由于背景不同,认知不同,每个人看待它的角度、方法都各不相同。为了控制复杂度,我们需要设计一整
- Hbase深入浅出
天才之上
数据存储Hbase大数据存储
目录HBase在大数据生态圈中的位置HBase与传统关系数据库的区别HBase相关的模块以及HBase表格的特性HBase的使用建议Phoenix的使用总结HBase在大数据生态圈中的位置提到大数据的存储,大多数人首先联想到的是Hadoop和Hadoop中的HDFS模块。大家熟知的Spark、以及Hadoop的MapReduce,可以理解为一种计算框架。而HDFS,我们可以认为是为计算框架服务的存
- 深入浅出了解HBase及RDD编程
山海王子
大数据hbase
深入浅出了解HBaseHBase简介架构HBase是什么样的数据库?关键是数据模型关键要素:什么是单元格时间戳的功能是什么?HBase为什么能存储海量数据创建一个HBase表配置Spark编写程序读取HBase数据编写程序向HBase写入数据关于搭建HBase高可用集群的图文教程,可参考我的另一篇博文——安装并配置HBase集群(5个节点)。HBase简介HBase是GoogleBigTable的
- Spark 性能优化(四):Cache
LevenBigData
spark性能调优spark性能优化大数据
在Spark中,缓存是一种将计算结果存储在内存中的方式,目的是加速后续操作。当你执行迭代算法或查询时,如果多次重复使用相同的数据集,缓存可以避免每次都重新计算相同的转换操作。通过缓存,Spark可以将数据存储在内存中,这样在后续的处理阶段就能更快地访问。1.Spark缓存的关键点:缓存基本概念:通过调用.cache()对DataFrame或RDD进行缓存。默认情况下,数据会存储在内存中(RAM),
- 使用Docker搭建Flink集群
O_1CxH
Flink大数据Kafka大数据dockerflink容器
目录使用Docker搭建Flink集群docker-compose一键搭建步骤附录参考资料使用Docker搭建Flink集群在学习大数据框架的时候,需要一个真实的环境。我们知道,像spark、flink这些计算框架都有多种运行模式:在本地使用多线程模拟集群真正的分布式集群如果直接在IDE(Intellj)里面编译和运行写好的程序,实际上是用的前一种运行模式;如果想尝试真正的生产环境中任务的提交和管
- Spark 和 Flink
信徒_
sparkflink大数据
Spark和Flink都是目前流行的大数据处理引擎,但它们在架构设计、应用场景、性能和生态方面有较大区别。以下是详细对比:1.架构与核心概念方面ApacheSparkApacheFlink计算模型微批(Micro-Batch)为主,但支持结构化流(StructuredStreaming)原生流(TrueStreaming),基于事件驱动处理方式以RDD、DataFrame/Dataset作为核心抽
- spark任务运行
冰火同学
Sparkspark大数据分布式
运行环境在这里插入代码片[root@hadoop000conf]#java-versionjavaversion"1.8.0_144"Java(TM)SERuntimeEnvironment(build1.8.0_144-b01)[root@hadoop000conf]#echo$JAVA_HOME/home/hadoop/app/jdk1.8.0_144[root@hadoop000conf]#
- 【Redis】golang操作Redis基础入门
寸 铁
go数据库Redisredisgolang数据库CRUD基本操作分布式键值对
【Redis】golang操作Redis基础入门大家好我是寸铁总结了一篇【Redis】golang操作Redis基础入门sparkles:喜欢的小伙伴可以点点关注Redis的作用Redis(RemoteDictionaryServer)是一个开源的内存数据库,它主要用于存储键值对,并提供多种数据结构的支持。Redis的主要作用包括:1.缓存:Redis可以作为缓存系统,将常用的数据缓存在内存中,以
- hive spark读取hive hbase外表报错分析和解决
spring208208
hivehivesparkhbase
问题现象使用Sparkshell操作hive关联Hbase的外表导致报错;hive使用tez引擎操作关联Hbase的外表时报错。问题1:使用tez或spark引擎,在hive查询时只要关联hbase的hive表就会有问题其他表正常。“org.apache.hadoop.hbase.client.RetriesExhaustedException:Can’tgetthelocations”问题2:s
- spark-广播变量
哈哈哈哈q
+sparkhdfshadoop大数据spark
当本地数据极大的时候,可以使用广播变量,使得减少内存。本地集合对象和分布式集合对象(RDD)进行关联的时候,需要将本地集合对象广播变量。本地的数据传输到集群上,会发到每一个线程,每一个分区。每一个进程executor,有多个线程分区,进程内的线程数据共享因此,给每一个线程发送数据会导致数据占用,浪费资源。所有,出现了广播变量,使得只发送给进程代码使用:broadcast=sc.broadcast(
- 探索数据云的无缝桥梁:Apache Spark 与 Snowflake 的完美结合
窦育培
探索数据云的无缝桥梁:ApacheSpark与Snowflake的完美结合spark-snowflakeSnowflakeDataSourceforApacheSpark.项目地址:https://gitcode.com/gh_mirrors/sp/spark-snowflake项目介绍在大数据处理的浩瀚宇宙中,Snowflake以其独特的云数据仓库能力闪耀,而ApacheSpark则是数据分析和
- maven插件学习(maven-shade-plugin和maven-antrun-plugin插件)
catcher92
javamavenmaven学习大数据
整合spark3.3.x和hive2.1.1-cdh6.3.2碰到个问题,就是spark官方支持的hive是2.3.x,但是cdh中的hive确是2.1.x的,项目中又计划用spark-thrift-server,导致编译过程中有部分报错。其中OperationLog这个类在hive2.3中新增加了几个方法,导致编译报错。这个时候有两种解决办法:修改spark源码,注释掉调用OperationLo
- 使用SparkLLM实现智能聊天:技术原理与实战演示
shuoac
java
在本篇文章中,我们将探讨如何使用iFlyTek的SparkLLM模型来实现智能聊天功能。我们将详细介绍SparkLLM的技术背景、核心原理,并通过实际代码展示如何进行实现。另外,还会分析应用场景并给出一些实践建议。技术背景介绍SparkLLM是由iFlyTek提供的一种强大的语言模型,支持多种语言生成任务。它能够理解并生成自然语言,适用于对话系统、内容生成、智能客服等场景。核心原理解析SparkL
- Spark 性能优化 (三):RBO 与 CBO
LevenBigData
spark性能调优spark性能优化ajax
1.RBO的核心概念在ApacheSpark的查询优化过程中,规则优化(Rule-BasedOptimization,RBO)是Catalyst优化器的一个关键组成部分。它主要依赖于一组固定的规则进行优化,而不是基于统计信息(如CBO-Cost-BasedOptimization)。RBO主要通过一系列逻辑规则(LogicalRules)和物理规则(PhysicalRules)来转换和优化查询计划
- python 并行框架_基于python的高性能实时并行机器学习框架之Ray介绍
weixin_39778582
python并行框架
前言加州大学伯克利分校实时智能安全执行实验室(RISELab)的研究人员已开发出了一种新的分布式框架,该框架旨在让基于Python的机器学习和深度学习工作负载能够实时执行,并具有类似消息传递接口(MPI)的性能和细粒度。这种框架名为Ray,看起来有望取代Spark,业界认为Spark对于一些现实的人工智能应用而言速度太慢了;过不了一年,Ray应该会准备好用于生产环境。目前ray已经发布了0.3.0
- java获取hive表所有字段,Hive Sql从表中动态获取空列计数
拾亿年
java获取hive表所有字段
我正在使用datastaxspark集成和sparkSQLthrift服务器,它为我提供了一个HiveSQL接口来查询Cassandra中的表.我的数据库中的表是动态创建的,我想要做的是仅根据表名在表的每列中获取空值的计数.我可以使用describedatabase.table获取列名,但在hiveSQL中,如何在另一个为所有列计数null的select查询中使用其输出.更新1:使用Dudu的解决
- PySpark查询Dataframe中包含乱码的数据记录的方法
weixin_30777913
python大数据spark
首先,用PySpark获取Dataframe中所有非ASCII字符,找到其中的非乱码字符。frompyspark.sqlimportSparkSessionfrompyspark.sql.functionsimportcol,concat_ws,explode,split,coalesce,litfrompyspark.sql.typesimportStringTypespark=SparkSes
- jvm调优总结(从基本概念 到 深度优化)
oloz
javajvmjdk虚拟机应用服务器
JVM参数详解:http://www.cnblogs.com/redcreen/archive/2011/05/04/2037057.html
Java虚拟机中,数据类型可以分为两类:基本类型和引用类型。基本类型的变量保存原始值,即:他代表的值就是数值本身;而引用类型的变量保存引用值。“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置。
- 【Scala十六】Scala核心十:柯里化函数
bit1129
scala
本篇文章重点说明什么是函数柯里化,这个语法现象的背后动机是什么,有什么样的应用场景,以及与部分应用函数(Partial Applied Function)之间的联系 1. 什么是柯里化函数
A way to write functions with multiple parameter lists. For instance
def f(x: Int)(y: Int) is a
- HashMap
dalan_123
java
HashMap在java中对很多人来说都是熟的;基于hash表的map接口的非同步实现。允许使用null和null键;同时不能保证元素的顺序;也就是从来都不保证其中的元素的顺序恒久不变。
1、数据结构
在java中,最基本的数据结构无外乎:数组 和 引用(指针),所有的数据结构都可以用这两个来构造,HashMap也不例外,归根到底HashMap就是一个链表散列的数据
- Java Swing如何实时刷新JTextArea,以显示刚才加append的内容
周凡杨
java更新swingJTextArea
在代码中执行完textArea.append("message")后,如果你想让这个更新立刻显示在界面上而不是等swing的主线程返回后刷新,我们一般会在该语句后调用textArea.invalidate()和textArea.repaint()。
问题是这个方法并不能有任何效果,textArea的内容没有任何变化,这或许是swing的一个bug,有一个笨拙的办法可以实现
- servlet或struts的Action处理ajax请求
g21121
servlet
其实处理ajax的请求非常简单,直接看代码就行了:
//如果用的是struts
//HttpServletResponse response = ServletActionContext.getResponse();
// 设置输出为文字流
response.setContentType("text/plain");
// 设置字符集
res
- FineReport的公式编辑框的语法简介
老A不折腾
finereport公式总结
FINEREPORT用到公式的地方非常多,单元格(以=开头的便被解析为公式),条件显示,数据字典,报表填报属性值定义,图表标题,轴定义,页眉页脚,甚至单元格的其他属性中的鼠标悬浮提示内容都可以写公式。
简单的说下自己感觉的公式要注意的几个地方:
1.if语句语法刚接触感觉比较奇怪,if(条件式子,值1,值2),if可以嵌套,if(条件式子1,值1,if(条件式子2,值2,值3)
- linux mysql 数据库乱码的解决办法
墙头上一根草
linuxmysql数据库乱码
linux 上mysql数据库区分大小写的配置
lower_case_table_names=1 1-不区分大小写 0-区分大小写
修改/etc/my.cnf 具体的修改内容如下:
[client]
default-character-set=utf8
[mysqld]
datadir=/var/lib/mysql
socket=/va
- 我的spring学习笔记6-ApplicationContext实例化的参数兼容思想
aijuans
Spring 3
ApplicationContext能读取多个Bean定义文件,方法是:
ApplicationContext appContext = new ClassPathXmlApplicationContext(
new String[]{“bean-config1.xml”,“bean-config2.xml”,“bean-config3.xml”,“bean-config4.xml
- mysql 基准测试之sysbench
annan211
基准测试mysql基准测试MySQL测试sysbench
1 执行如下命令,安装sysbench-0.5:
tar xzvf sysbench-0.5.tar.gz
cd sysbench-0.5
chmod +x autogen.sh
./autogen.sh
./configure --with-mysql --with-mysql-includes=/usr/local/mysql
- sql的复杂查询使用案列与技巧
百合不是茶
oraclesql函数数据分页合并查询
本片博客使用的数据库表是oracle中的scott用户表;
------------------- 自然连接查询
查询 smith 的上司(两种方法)
&
- 深入学习Thread类
bijian1013
javathread多线程java多线程
一. 线程的名字
下面来看一下Thread类的name属性,它的类型是String。它其实就是线程的名字。在Thread类中,有String getName()和void setName(String)两个方法用来设置和获取这个属性的值。
同时,Thr
- JSON串转换成Map以及如何转换到对应的数据类型
bijian1013
javafastjsonnet.sf.json
在实际开发中,难免会碰到JSON串转换成Map的情况,下面来看看这方面的实例。另外,由于fastjson只支持JDK1.5及以上版本,因此在JDK1.4的项目中可以采用net.sf.json来处理。
一.fastjson实例
JsonUtil.java
package com.study;
impor
- 【RPC框架HttpInvoker一】HttpInvoker:Spring自带RPC框架
bit1129
spring
HttpInvoker是Spring原生的RPC调用框架,HttpInvoker同Burlap和Hessian一样,提供了一致的服务Exporter以及客户端的服务代理工厂Bean,这篇文章主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
在
【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中
- 【Mahout二】基于Mahout CBayes算法的20newsgroup的脚本分析
bit1129
Mahout
#!/bin/bash
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information re
- nginx三种获取用户真实ip的方法
ronin47
随着nginx的迅速崛起,越来越多公司将apache更换成nginx. 同时也越来越多人使用nginx作为负载均衡, 并且代理前面可能还加上了CDN加速,但是随之也遇到一个问题:nginx如何获取用户的真实IP地址,如果后端是apache,请跳转到<apache获取用户真实IP地址>,如果是后端真实服务器是nginx,那么继续往下看。
实例环境: 用户IP 120.22.11.11
- java-判断二叉树是不是平衡
bylijinnan
java
参考了
http://zhedahht.blog.163.com/blog/static/25411174201142733927831/
但是用java来实现有一个问题。
由于Java无法像C那样“传递参数的地址,函数返回时能得到参数的值”,唯有新建一个辅助类:AuxClass
import ljn.help.*;
public class BalancedBTree {
- BeanUtils.copyProperties VS PropertyUtils.copyProperties
诸葛不亮
PropertyUtilsBeanUtils
BeanUtils.copyProperties VS PropertyUtils.copyProperties
作为两个bean属性copy的工具类,他们被广泛使用,同时也很容易误用,给人造成困然;比如:昨天发现同事在使用BeanUtils.copyProperties copy有integer类型属性的bean时,没有考虑到会将null转换为0,而后面的业
- [金融与信息安全]最简单的数据结构最安全
comsci
数据结构
现在最流行的数据库的数据存储文件都具有复杂的文件头格式,用操作系统的记事本软件是无法正常浏览的,这样的情况会有什么问题呢?
从信息安全的角度来看,如果我们数据库系统仅仅把这种格式的数据文件做异地备份,如果相同版本的所有数据库管理系统都同时被攻击,那么
- vi区段删除
Cwind
linuxvi区段删除
区段删除是编辑和分析一些冗长的配置文件或日志文件时比较常用的操作。简记下vi区段删除要点备忘。
vi概述
引文中并未将末行模式单独列为一种模式。单不单列并不重要,能区分命令模式与末行模式即可。
vi区段删除步骤:
1. 在末行模式下使用:set nu显示行号
非必须,随光标移动vi右下角也会显示行号,能够正确找到并记录删除开始行
- 清除tomcat缓存的方法总结
dashuaifu
tomcat缓存
用tomcat容器,大家可能会发现这样的问题,修改jsp文件后,但用IE打开 依然是以前的Jsp的页面。
出现这种现象的原因主要是tomcat缓存的原因。
解决办法如下:
在jsp文件头加上
<meta http-equiv="Expires" content="0"> <meta http-equiv="kiben&qu
- 不要盲目的在项目中使用LESS CSS
dcj3sjt126com
Webless
如果你还不知道LESS CSS是什么东西,可以看一下这篇文章,是我一朋友写给新人看的《CSS——LESS》
不可否认,LESS CSS是个强大的工具,它弥补了css没有变量、无法运算等一些“先天缺陷”,但它似乎给我一种错觉,就是为了功能而实现功能。
比如它的引用功能
?
.rounded_corners{
- [入门]更上一层楼
dcj3sjt126com
PHPyii2
更上一层楼
通篇阅读完整个“入门”部分,你就完成了一个完整 Yii 应用的创建。在此过程中你学到了如何实现一些常用功能,例如通过 HTML 表单从用户那获取数据,从数据库中获取数据并以分页形式显示。你还学到了如何通过 Gii 去自动生成代码。使用 Gii 生成代码把 Web 开发中多数繁杂的过程转化为仅仅填写几个表单就行。
本章将介绍一些有助于更好使用 Yii 的资源:
- Apache HttpClient使用详解
eksliang
httpclienthttp协议
Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们再讨论),它不仅是客户端发送Http请求变得容易,而且也方便了开发人员测试接口(基于Http协议的),即提高了开发的效率,也方便提高代码的健壮性。因此熟练掌握HttpClient是很重要的必修内容,掌握HttpClient后,相信对于Http协议的了解会
- zxing二维码扫描功能
gundumw100
androidzxing
经常要用到二维码扫描功能
现给出示例代码
import com.google.zxing.WriterException;
import com.zxing.activity.CaptureActivity;
import com.zxing.encoding.EncodingHandler;
import android.app.Activity;
import an
- 纯HTML+CSS带说明的黄色导航菜单
ini
htmlWebhtml5csshovertree
HoverTree带说明的CSS菜单:纯HTML+CSS结构链接带说明的黄色导航
在线体验效果:http://hovertree.com/texiao/css/1.htm代码如下,保存到HTML文件可以看到效果:
<!DOCTYPE html >
<html >
<head>
<title>HoverTree
- fastjson初始化对性能的影响
kane_xie
fastjson序列化
之前在项目中序列化是用thrift,性能一般,而且需要用编译器生成新的类,在序列化和反序列化的时候感觉很繁琐,因此想转到json阵营。对比了jackson,gson等框架之后,决定用fastjson,为什么呢,因为看名字感觉很快。。。
网上的说法:
fastjson 是一个性能很好的 Java 语言实现的 JSON 解析器和生成器,来自阿里巴巴的工程师开发。
- 基于Mybatis封装的增删改查实现通用自动化sql
mengqingyu
DAO
1.基于map或javaBean的增删改查可实现不写dao接口和实现类以及xml,有效的提高开发速度。
2.支持自定义注解包括主键生成、列重复验证、列名、表名等
3.支持批量插入、批量更新、批量删除
<bean id="dynamicSqlSessionTemplate" class="com.mqy.mybatis.support.Dynamic
- js控制input输入框的方法封装(数字,中文,字母,浮点数等)
qifeifei
javascript js
在项目开发的时候,经常有一些输入框,控制输入的格式,而不是等输入好了再去检查格式,格式错了就报错,体验不好。 /** 数字,中文,字母,浮点数(+/-/.) 类型输入限制,只要在input标签上加上 jInput="number,chinese,alphabet,floating" 备注:floating属性只能单独用*/
funct
- java 计时器应用
tangqi609567707
javatimer
mport java.util.TimerTask; import java.util.Calendar; public class MyTask extends TimerTask { private static final int
- erlang输出调用栈信息
wudixiaotie
erlang
在erlang otp的开发中,如果调用第三方的应用,会有有些错误会不打印栈信息,因为有可能第三方应用会catch然后输出自己的错误信息,所以对排查bug有很大的阻碍,这样就要求我们自己打印调用的栈信息。用这个函数:erlang:process_display (self (), backtrace).需要注意这个函数只会输出到标准错误输出。
也可以用这个函数:erlang:get_s