机器学习之MATLAB代码--SSA-CNN-BiLSTM做电池容量预测(十)

机器学习之MATLAB代码--SSA-CNN-BiLSTM做电池容量预测(十)

  • 代码
    • 数据
      • 结果

代码

代码按照如下顺序:
机器学习之MATLAB代码--SSA-CNN-BiLSTM做电池容量预测(十)_第1张图片

1、


clc
close all
clear all


data=xlsread('B05.xlsx',1,'A2:A169');
numTimeStepsTrain = floor(0.7*numel(data));
dataTrain = data(1:numTimeStepsTrain,:);%选择训练集
dataTest = data(numTimeStepsTrain+1:end,:); % 选择测试集

k =9;           %滑动窗口设置为9  具体设多少需要衡量 
m = 1 ;          %预测步长
for  i = 1:size(dataTrain)-k-m+1
    XTrain(:,i) = dataTrain(i:i+k-1,:);
    YTrain(:,i) = dataTrain(i+k:i+k+m-1,:);
end 

for  i = 1:size(dataTest)-k-m+1
    XTest(:,i)  = dataTest(i:i+k-1,:);   
    YTest(:,i)  = dataTest(i+k:i+k+m-1,:); 
end



x = XTrain;
y = YTrain;

[xnorm,xopt] = mapminmax(x,0,1);
[ynorm,yopt] = mapminmax(y,0,1);
x = x';




% 转换成2-D image
for i = 1:length(ynorm)

    Train_xNorm{i} = reshape(xnorm(:,i),k,1,1);
    Train_yNorm(:,i) = ynorm(:,i);
    Train_y(i,:) = y(:,i);
end
Train_yNorm= Train_yNorm';


xtest = XTest;
ytest = YTest;
[xtestnorm] = mapminmax('apply', xtest,xopt);
[ytestnorm] = mapminmax('apply',ytest,yopt);
xtest = xtest';
for i = 1:length(ytestnorm)
  Test_xNorm{i} = reshape(xtestnorm(:,i),k,1,1);
  Test_yNorm(:,i) = ytestnorm(:,i);
  Test_y(i,:) = ytest(:,i);
end
Test_yNorm = Test_yNorm';


%% SSA优化参数设置
SearchAgents = 10; % 种群数量  50
Max_iterations = 30 ; % 迭代次数   10
lowerbound = [1e-10 0.001 10 ];%三个参数的下限
upperbound = [1e-2 0.01 200 ];%三个参数的上限
dimension = 3;%数量,即要优化的LSTM参数个数
%% SSA优化LSTM
% [Best_pos,Best_score,Convergence_curve]=SSA(SearchAgents,Max_iterations,lowerbound,upperbound,dimension,ObjFcn)

%%  参数设置       
ST = 0.8;                    % 预警值
PD = 0.2;                    % 发现者的比列,剩下的是加入者
PDNumber = SearchAgents * PD;         % 发现者数量
SDNumber = SearchAgents - SearchAgents * PD;   % 意识到有危险麻雀数量

%%  判断优化参数个数
if(max(size(upperbound)) == 1)
   upperbound = upperbound .* ones(1, dimension);
   lowerbound = lowerbound .* ones(1, dimension);  
end

%%  种群初始化
pop_lsat = initialization(SearchAgents, dimension, upperbound, lowerbound);
pop_new  = pop_lsat;

%%  计算初始适应度值
fitness = zeros(1, SearchAgents);
for i = 1 : SearchAgents
   fitness(i) =  fun(pop_new(i,:),Train_xNorm,Train_yNorm,Test_xNorm,Test_y,yopt,k);
end

%%  得到全局最优适应度值
[fitness, index]= sort(fitness);
GBestF = fitness(1); 

%%  得到全局最优种群
for i = 1 : SearchAgents
    pop_new(i, :) = pop_lsat(index(i), :);
end

GBestX = pop_new(1, :);
X_new  = pop_new;

%%  优化算法
for i = 1: Max_iterations

   BestF = fitness(1);
   R2 = rand(1);

   for j = 1 : PDNumber
      if(R2 < ST)
          X_new(j, :) = pop_new(j, :) .* exp(-j / (rand(1) * Max_iterations));
      else
          X_new(j, :) = pop_new(j, :) + randn() * ones(1, dimension);
      end     
   end
   
   for j = PDNumber + 1 : SearchAgents
        if(j > (SearchAgents - PDNumber) / 2 + PDNumber)
          X_new(j, :) = randn() .* exp((pop_new(end, :) - pop_new(j, :)) / j^2);
        else
          A = ones(1, dimension);
          for a = 1 : dimension
              if(rand() > 0.5)
                A(a) = -1;
              end
          end
          AA = A' / (A * A');     
          X_new(j, :) = pop_new(1, :) + abs(pop_new(j, :) - pop_new(1, :)) .* AA';
       end
   end
   
   Temp = randperm(SearchAgents);
   SDchooseIndex = Temp(1 : SDNumber); 
   
   for j = 1 : SDNumber
       if(fitness(SDchooseIndex(j)) > BestF)
           X_new(SDchooseIndex(j), :) = pop_new(1, :) + randn() .* abs(pop_new(SDchooseIndex(j), :) - pop_new(1, :));
       elseif(fitness(SDchooseIndex(j)) == BestF)
           K = 2 * rand() -1;
           X_new(SDchooseIndex(j), :) = pop_new(SDchooseIndex(j), :) + K .* (abs(pop_new(SDchooseIndex(j), :) - ...
               pop_new(end, :)) ./ (fitness(SDchooseIndex(j)) - fitness(end) + 10^-8));
       end
   end

%%  边界控制
   for j = 1 : SearchAgents
       for a = 1 : dimension
           if(X_new(j, a) > upperbound(a))
              X_new(j, a) = upperbound(a);
           end
           if(X_new(j, a) < lowerbound(a))
              X_new(j, a) = lowerbound(a);
           end
       end
   end 

%%  获取适应度值
   for j = 1 : SearchAgents
    fitness_new(j) = fun(X_new(j, :),Train_xNorm,Train_yNorm,Test_xNorm,Test_y,yopt,k);
   end
   
%%  获取最优种群
   for j = 1 : SearchAgents
       if(fitness_new(j) < GBestF)
          GBestF = fitness_new(j);
          GBestX = X_new(j, :);
       end
   end
   
%%  更新种群和适应度值
   pop_new = X_new;
   fitness = fitness_new;

%%  更新种群 
   [fitness, index] = sort(fitness);
   for j = 1 : SearchAgents
      pop_new(j, :) = pop_new(index(j), :);
   end

%%  得到优化曲线
   curve(i) = GBestF;
   avcurve(i) = sum(curve) / length(curve);
end

%%  得到最优值
Best_pos = GBestX;
Best_score = curve(end);


%%  得到最优参数
NumOfUnits       =abs(round( Best_pos(1,3)));       % 最佳神经元个数
InitialLearnRate =  Best_pos(1,2) ;% 最佳初始学习率
L2Regularization = Best_pos(1,1); % 最佳L2正则化系数
% 
inputSize = k;
outputSize = 1;  %数据输出y的维度  

layers = [ ...
    
    sequenceInputLayer([inputSize,1,1],'name','input')   %输入层设置
    sequenceFoldingLayer('name','fold')
    convolution2dLayer([2,1],10,'Stride',[1,1],'name','conv1')
    batchNormalizationLayer('name','batchnorm1')
    reluLayer('name','relu1')
    convolution2dLayer([1,1],10,'Stride',[1,1],'name','conv2')
    batchNormalizationLayer('name','batchnorm2')
    reluLayer('name','relu2')
    maxPooling2dLayer([1,3],'Stride',1,'Padding','same','name','maxpool')
    sequenceUnfoldingLayer('name','unfold')
    flattenLayer('name','flatten')
    bilstmLayer(NumOfUnits ,'Outputmode','sequence','name','hidden1') 
    dropoutLayer(0.3,'name','dropout_1')
    bilstmLayer(NumOfUnits ,'Outputmode','sequence','name','hidden3') 
    dropoutLayer(0.3,'name','dropout_3')
    bilstmLayer(NumOfUnits ,'Outputmode','last','name','hidden2') 
    dropoutLayer(0.3,'name','drdiopout_2')
    fullyConnectedLayer(outputSize,'name','fullconnect')   % 全连接层设置(影响输出维度)(cell层出来的输出层) %
    tanhLayer('name','softmax')
    regressionLayer('name','output')];

lgraph = layerGraph(layers)
lgraph = connectLayers(lgraph,'fold/miniBatchSize','unfold/miniBatchSize');


%  参数设置
% options = trainingOptions('adam', ...                 % 优化算法Adam
%     'MaxEpochs', 2000, ...                            % 最大训练次数
%     'GradientThreshold', 1, ...                       % 梯度阈值
%     'InitialLearnRate', InitialLearnRate, ...         % 初始学习率
%     'LearnRateSchedule', 'piecewise', ...             % 学习率调整
%     'LearnRateDropPeriod', 850, ...                   % 训练850次后开始调整学习率
%     'LearnRateDropFactor',0.2, ...                    % 学习率调整因子
%     'L2Regularization', L2Regularization, ...         % 正则化参数
%     'ExecutionEnvironment', 'cpu',...                 % 训练环境
%     'Verbose', 0, ...                                 % 关闭优化过程
%     'Plots', 'training-progress');                    % 画出曲线


opts = trainingOptions('adam', ...
    'MaxEpochs',500, ...
    'GradientThreshold',1,...
    'ExecutionEnvironment','cpu',...
    'InitialLearnRate',InitialLearnRate, ...
    'LearnRateSchedule','piecewise', ...
    'LearnRateDropPeriod',100, ...   %2个epoch后学习率更新
    'LearnRateDropFactor',0.5, ...
    'Shuffle','once',...  % 时间序列长度
    'SequenceLength',1,...
    'MiniBatchSize',128,...
    'Verbose',1,...
    'Plots','training-progress');

% 网络训练
tic

net = trainNetwork(Train_xNorm,Train_yNorm,lgraph,opts );




Predict_Ynorm_Train = net.predict(Train_xNorm);
Predict_Y_Train  = mapminmax('reverse',Predict_Ynorm_Train',yopt);
Predict_Y_Train = Predict_Y_Train';

figure
hold on 
plot(Predict_Y_Train,'r-','LineWidth',2.0)
plot(Train_y,'b-','LineWidth',2.0);    
ylabel('容量')
legend('预测值','实际值')
title('训练')





Predict_Ynorm = net.predict(Test_xNorm);
Predict_Y  = mapminmax('reverse',Predict_Ynorm',yopt);
Predict_Y = Predict_Y';


figure
hold on 
plot(Predict_Y,'r-','LineWidth',2.0)
plot(Test_y,'b-','LineWidth',2.0)
legend('预测值','实际值')
ylabel('容量')
title('测试')

predict_value = [Predict_Y_Train' Predict_Y'];
real_value = [Train_y' Test_y'];
figure
hold on 
plot(predict_value,'r-','LineWidth',2.0)
plot(real_value,'b-','LineWidth',2.0)
legend('预测值','实际值')
ylabel('容量')
title('测试')


% 预测结果评价
ae= abs(Predict_Y - Test_y);
rmse = (mean(ae.^2)).^0.5;
mse = mean(ae.^2);
mae = mean(ae);
mape = mean(ae./Predict_Y);

disp('预测结果评价指标:')
disp(['RMSE = ', num2str(rmse)])
disp(['MSE  = ', num2str(mse)])
disp(['MAE  = ', num2str(mae)])
disp(['MAPE = ', num2str(mape)])


disp(['最佳神经元个数为:', num2str(NumOfUnits)])
disp(['最佳初始学习率为:', num2str(InitialLearnRate)])
disp(['最佳L2正则化系数为:', num2str(L2Regularization)])

2、

function Positions = initialization(SearchAgents_no, dim, ub, lb)

%%  初始化

%%  待优化参数个数
Boundary_no = size(ub, 2); 

%%  若待优化参数个数为1
if Boundary_no == 1
    Positions = rand(SearchAgents_no, dim) .* (ub - lb) + lb;
end

%%  如果存在多个输入边界个数
if Boundary_no > 1
    for i = 1 : dim
        ub_i = ub(i);
        lb_i = lb(i);
        Positions(:, i) = rand(SearchAgents_no, 1) .* (ub_i - lb_i) + lb_i;
    end
end

3、

function y = fun(x,Train_xNorm,Train_yNorm,Test_xNorm,Test_y,yopt,k)
%函数用于计算粒子适应度值


%rng default;%固定随机数

numhidden_units1 =  fix(x(3))+1; % 隐含层神经元数量 round为四舍五入函数;
numhidden_units2= fix(x(3))+1;



%  层设置,参数设置
inputSize = k;
outputSize = 1;  %数据输出y的维度  




options = trainingOptions('adam', ...
    'MaxEpochs',500, ...
    'GradientThreshold',1,...
    'ExecutionEnvironment','cpu',...
    'InitialLearnRate',x(2), ...
    'LearnRateSchedule','piecewise', ...
    'LearnRateDropPeriod',100, ...   %100个epoch后学习率更新
    'LearnRateDropFactor',0.5, ...
    'Shuffle','once',...  % 时间序列长度
    'SequenceLength',1,...
    'MiniBatchSize',128,...
    'L2Regularization', x(1), ... 
    'Verbose',1);
%% lstm

layers = [ ...
    
    sequenceInputLayer([inputSize,1,1],'name','input')   %输入层设置
    sequenceFoldingLayer('name','fold')
    convolution2dLayer([2,1],10,'Stride',[1,1],'name','conv1')
    batchNormalizationLayer('name','batchnorm1')
    reluLayer('name','relu1')
    convolution2dLayer([1,1],10,'Stride',[1,1],'name','conv2')
    batchNormalizationLayer('name','batchnorm2')
    reluLayer('name','relu2')
    maxPooling2dLayer([1,3],'Stride',1,'Padding','same','name','maxpool')
    sequenceUnfoldingLayer('name','unfold')
    flattenLayer('name','flatten')
    bilstmLayer(numhidden_units1,'Outputmode','sequence','name','hidden1') 
    dropoutLayer(0.3,'name','dropout_1')
    bilstmLayer(numhidden_units1,'Outputmode','sequence','name','hidden3') 
    dropoutLayer(0.3,'name','dropout_3')
    bilstmLayer(numhidden_units2,'Outputmode','last','name','hidden2') 
    dropoutLayer(0.3,'name','drdiopout_2')
    fullyConnectedLayer(outputSize,'name','fullconnect')   % 全连接层设置(影响输出维度)(cell层出来的输出层) %
    tanhLayer('name','softmax')
    regressionLayer('name','output')];



lgraph = layerGraph(layers)
lgraph = connectLayers(lgraph,'fold/miniBatchSize','unfold/miniBatchSize');

%
% 网络训练


net = trainNetwork(Train_xNorm,Train_yNorm,lgraph,options);

Predict_Ynorm = net.predict(Test_xNorm);
Predict_Y  = mapminmax('reverse',Predict_Ynorm',yopt);
Predict_Y = Predict_Y';

% rmse_without_update1 = sqrt(mean((Predict_Y(1,:)-Test_y(1,:))).^2,'ALL')
rmse_without_update1 = sqrt(mean((Predict_Y(1,:)-(Test_y(1,:))).^2,'ALL'))
y = rmse_without_update1 ;%  cost为目标函数 ,目标函数为rmse
end

4、


clc
close all
clear all


data=xlsread('B05.xlsx',1,'A2:A169');
numTimeStepsTrain = floor(0.7*numel(data));
dataTrain = data(1:numTimeStepsTrain,:);%选择训练集
dataTest = data(numTimeStepsTrain+1:end,:); % 选择测试集

k =9;           %滑动窗口设置为9  具体设多少需要衡量 
m = 1 ;          %预测步长
for  i = 1:size(dataTrain)-k-m+1
    XTrain(:,i) = dataTrain(i:i+k-1,:);
    YTrain(:,i) = dataTrain(i+k:i+k+m-1,:);
end 

for  i = 1:size(dataTest)-k-m+1
    XTest(:,i)  = dataTest(i:i+k-1,:);   
    YTest(:,i)  = dataTest(i+k:i+k+m-1,:); 
end



x = XTrain;
y = YTrain;

[xnorm,xopt] = mapminmax(x,0,1);
[ynorm,yopt] = mapminmax(y,0,1);
x = x';




% 转换成2-D image
for i = 1:length(ynorm)

    Train_xNorm{i} = reshape(xnorm(:,i),k,1,1);
    Train_yNorm(:,i) = ynorm(:,i);
    Train_y(i,:) = y(:,i);
end
Train_yNorm= Train_yNorm';


xtest = XTest;
ytest = YTest;
[xtestnorm] = mapminmax('apply', xtest,xopt);
[ytestnorm] = mapminmax('apply',ytest,yopt);
xtest = xtest';
for i = 1:length(ytestnorm)
  Test_xNorm{i} = reshape(xtestnorm(:,i),k,1,1);
  Test_yNorm(:,i) = ytestnorm(:,i);
  Test_y(i,:) = ytest(:,i);
end
Test_yNorm = Test_yNorm';



% 
inputSize = k;
outputSize = m;  %数据输出y的维度  
NumOfUnits = 100;

layers = [ ...
    
    sequenceInputLayer([inputSize,1,1],'name','input')   %输入层设置
    sequenceFoldingLayer('name','fold')
    convolution2dLayer([2,1],10,'Stride',[1,1],'name','conv1')
    batchNormalizationLayer('name','batchnorm1')
    reluLayer('name','relu1')
    convolution2dLayer([1,1],10,'Stride',[1,1],'name','conv2')
    batchNormalizationLayer('name','batchnorm2')
    reluLayer('name','relu2')
    maxPooling2dLayer([1,3],'Stride',1,'Padding','same','name','maxpool')
    sequenceUnfoldingLayer('name','unfold')
    flattenLayer('name','flatten')
    bilstmLayer(NumOfUnits ,'Outputmode','sequence','name','hidden1') 
    dropoutLayer(0.3,'name','dropout_1')
    bilstmLayer(NumOfUnits ,'Outputmode','sequence','name','hidden3') 
    dropoutLayer(0.3,'name','dropout_3')
    bilstmLayer(NumOfUnits ,'Outputmode','last','name','hidden2') 
    dropoutLayer(0.3,'name','drdiopout_2')
    fullyConnectedLayer(outputSize,'name','fullconnect')   % 全连接层设置(影响输出维度)(cell层出来的输出层) %
    tanhLayer('name','softmax')
    regressionLayer('name','output')];

lgraph = layerGraph(layers)
lgraph = connectLayers(lgraph,'fold/miniBatchSize','unfold/miniBatchSize');




opts = trainingOptions('adam', ...
    'MaxEpochs',500, ...
    'GradientThreshold',1,...
    'ExecutionEnvironment','cpu',...
    'InitialLearnRate',0.001, ...
    'LearnRateSchedule','piecewise', ...
    'LearnRateDropPeriod',100, ...   %2个epoch后学习率更新
    'LearnRateDropFactor',0.5, ...
    'Shuffle','once',...  % 时间序列长度
    'SequenceLength',1,...
    'MiniBatchSize',28,...
    'Verbose',1,...
    'Plots','training-progress');

% 网络训练
tic

net = trainNetwork(Train_xNorm,Train_yNorm,lgraph,opts );




Predict_Ynorm_Train = net.predict(Train_xNorm);
Predict_Y_Train  = mapminmax('reverse',Predict_Ynorm_Train',yopt);
Predict_Y_Train = Predict_Y_Train';

figure
hold on 
plot(Predict_Y_Train,'r-','LineWidth',2.0)
plot(Train_y,'b-','LineWidth',2.0);    
ylabel('容量')
legend('预测值','实际值')
title('训练')





Predict_Ynorm = net.predict(Test_xNorm);
Predict_Y  = mapminmax('reverse',Predict_Ynorm',yopt);
Predict_Y = Predict_Y';


figure
hold on 
plot(Predict_Y,'r-','LineWidth',2.0)
plot(Test_y,'b-','LineWidth',2.0)
legend('预测值','实际值')
ylabel('容量')
title('测试')

predict_value = [Predict_Y_Train' Predict_Y'];
real_value = [Train_y' Test_y'];
figure
hold on 
plot(predict_value,'r-','LineWidth',2.0)
plot(real_value,'b-','LineWidth',2.0)
legend('预测值','实际值')
ylabel('容量')
title('测试')


% 预测结果评价
ae= abs(Predict_Y - Test_y);
rmse = (mean(ae.^2)).^0.5;
mse = mean(ae.^2);
mae = mean(ae);
mape = mean(ae./Predict_Y);

disp('预测结果评价指标:')
disp(['RMSE = ', num2str(rmse)])
disp(['MSE  = ', num2str(mse)])
disp(['MAE  = ', num2str(mae)])
disp(['MAPE = ', num2str(mape)])


5、

clc
close all
clear all

data=xlsread('B05.xlsx',1,'A2:A169');
numTimeStepsTrain = floor(0.7*numel(data));
dataTrain = data(1:numTimeStepsTrain,:);%选择训练集
dataTest = data(numTimeStepsTrain+1:end,:); % 选择测试集
%标准化
mu = mean(dataTrain,'ALL');
sig = std(dataTrain,0,'ALL');
dataTrainStandardized = (dataTrain - mu) / sig;
k =9;           %滑动窗口设置为9   具体设多少需要衡量 
m = 1 ;          %预测步长
for  i = 1:size(dataTrainStandardized)-k-m+1
    XTrain(:,i) = dataTrainStandardized(i:i+k-1,:);
    YTrain(:,i) = dataTrainStandardized(i+k:i+k+m-1,:);
end 

% XTrain = XTrain';
% YTrain = YTrain';

dataTestStandardized = (dataTest - mu) / sig;
                                                  
for  i = 1:size(dataTestStandardized)-k-m+1
    XTest(:,i)  = dataTestStandardized(i:i+k-1,:);   
    YTest(:,i)  = dataTestStandardized(i+k:i+k+m-1,:); 
end

% XTest = XTest';
% YTest = YTest';
%% define the Deeper LSTM networks
%创建LSTM回归网络,指定LSTM层的隐含单元个数125
%序列预测,因此,输入一维,输出一维
numFeatures= k;%输入特征的维度
numResponses = m;%响应特征的维度
numHiddenUnits = 30;%隐藏单元个数


layers = [sequenceInputLayer(numFeatures) 
bilstmLayer(numHiddenUnits)
fullyConnectedLayer(numResponses)
regressionLayer];


MaxEpochs=500;%最大迭代次数
InitialLearnRate=0.05;%初始学习率
%% back up to LSTM model
options = trainingOptions('adam', ...
'MaxEpochs',MaxEpochs,...%30用于训练的最大轮次数,迭代是梯度下降算法中使用小批处理来最小化损失函数的一个步骤。一个轮次是训练算法在整个训练集上的一次全部遍历。
 'MiniBatchSize',30, ... %128小批量大小,用于每个训练迭代的小批处理的大小,小批处理是用于评估损失函数梯度和更新权重的训练集的子集。
'GradientThreshold',1, ...%梯度下降阈值
'InitialLearnRate',InitialLearnRate, ...%全局学习率。默认率是0.01,但是如果网络训练不收敛,你可能希望选择一个更小的值。默认情况下,trainNetwork在整个训练过程中都会使用这个值,除非选择在每个特定的时间段内通过乘以一个因子来更改这个值。而不是使用一个小的固定学习速率在整个训练, 在训练开始时选择较大的学习率,并在优化过程中逐步降低学习率,可以帮助缩短训练时间,同时随着训练的进行,可以使更小的步骤达到最优值,从而在训练结束时进行更精细的搜索。
'LearnRateSchedule','piecewise', ...%在训练期间降低学习率的选项,默认学习率不变。'piecewise’表示在学习过程中降低学习率
 'LearnRateDropPeriod',100, ...% 10降低学习率的轮次数量,每次通过指定数量的epoch时,将全局学习率与学习率降低因子相乘
'LearnRateDropFactor',0.5, ...%学习下降因子
'Verbose',1, ...%1指示符,用于在命令窗口中显示训练进度信息,显示的信息包括轮次数、迭代数、时间、小批量的损失、小批量的准确性和基本学习率。训练一个回归网络时,显示的是均方根误差(RMSE),而不是精度。如果在训练期间验证网络。
 'Plots','training-progress');
%% Train LSTM Network
net = trainNetwork(XTrain,YTrain,layers,options);
net = predictAndUpdateState(net,XTrain);

numTimeStepsTrain = numel(XTrain(1,:));

for i = 1:numTimeStepsTrain
    [net,YPred_Train(:,i)] = predictAndUpdateState(net,XTrain(:,i),'ExecutionEnvironment','cpu');

end

YPred_Train = sig*YPred_Train + mu;
YTrain = sig*YTrain + mu;


numTimeStepsTest = numel(XTest(1,:));

for i = 1:numTimeStepsTest
    [net,YPred(:,i)] = predictAndUpdateState(net,XTest(:,i),'ExecutionEnvironment','cpu');
end


YPred = sig*YPred + mu;
YTest = sig*YTest + mu;
 % % 评价
ae= abs(YPred(m,:) - YTest(m,:));
rmse = (mean(ae.^2)).^0.5;
mse = mean(ae.^2);
mae = mean(ae);
mape = mean(ae./YTest(m,:));

disp('预测结果评价指标:')
disp(['RMSE = ', num2str(rmse)])
disp(['MSE  = ', num2str(mse)])
disp(['MAE  = ', num2str(mae)])
disp(['MAPE = ', num2str(mape)])



figure(1)

hold on 
plot(YPred_Train(m,:),'r-','LineWidth',2);
plot(YTrain(m,:),'b-','LineWidth',2);

hl = legend;
set(hl,'Box','off')
legend('预测值','实际值')
ylabel('电池容量')
title('训练')


figure(2)
hold on 
plot(YPred(m,:),'r-','LineWidth',2);
plot(YTest(m,:),'b-','LineWidth',2);
hl = legend;
set(hl,'Box','off')
legend('预测值','实际值')
ylabel('电池容量')
title('测试')



predict_value = [YPred_Train(m,:),YPred(m,:)];
real_value = [YTrain(m,:),YTest(m,:)];



figure
hold on
plot(predict_value,'r-','LineWidth',2);
plot(real_value,'b-','LineWidth',2);

hl = legend;
set(hl,'Box','off')
legend('预测值','实际值')

% 
% 

数据

两个数据集都类似
机器学习之MATLAB代码--SSA-CNN-BiLSTM做电池容量预测(十)_第2张图片

结果

机器学习之MATLAB代码--SSA-CNN-BiLSTM做电池容量预测(十)_第3张图片
机器学习之MATLAB代码--SSA-CNN-BiLSTM做电池容量预测(十)_第4张图片
机器学习之MATLAB代码--SSA-CNN-BiLSTM做电池容量预测(十)_第5张图片
机器学习之MATLAB代码--SSA-CNN-BiLSTM做电池容量预测(十)_第6张图片

你可能感兴趣的:(matlab,cnn)