- 基于卷积神经网络与小波变换的医学图像超分辨率算法复现
神经网络15044
python算法cnn算法人工智能图像处理开发语言神经网络深度学习
基于卷积神经网络与小波变换的医学图像超分辨率算法复现前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家,觉得好请收藏。点击跳转到网站。1.引言医学图像超分辨率技术在临床诊断和治疗规划中具有重要意义。高分辨率的医学图像能够提供更丰富的细节信息,帮助医生做出更准确的诊断。近年来,深度学习技术在图像超分辨率领域取得了显著进展。本文将复现一种结合卷积神经网络(CNN)、小波变
- 【三维感知目标检测论文阅读】《Point RCNN: An Angle-Free Framework for Rotated Object Detection》
今天给大家带来的论文是2019年的《PointRCNN:AnAngle-FreeFrameworkforRotatedObjectDetection》。尽管这是一篇较早的纯点云检测论文,但我把它放在了最后来讲。因为在了解了各类主流方法后,再回过头来阅读它会有更深的理解。PointRCNN采用自底向上的方式直接从点云生成高质量的3D候选框,其对于旋转框的无角度(Angle-Free)处理方式,对于理
- 【人工智能99问】卷积神经网络(CNN)的结构和原理是什么?(10/99)
文章目录卷积神经网络(CNN)的结构及原理一、CNN的核心结构1.输入层(InputLayer)2.卷积层(ConvolutionalLayer)2.卷积层的核心机制:局部感受野与权值共享3.池化层(PoolingLayer)4.全连接层(FullyConnectedLayer)5.输出层(OutputLayer)6.辅助层二、CNN的工作原理三、CNN的使用场景1.计算机视觉(最核心场景)2.其
- 【CNN】卷积神经网络池化- part2
1.池化降采样,减少参数数量,避免过拟合,提高鲁棒性2.池化操作池化操作(也称为下采样,Subsampling)类似卷积操作,使用的也是一个很小的矩阵,叫做池化核,但是池化核本身没有参数,只是通过对输入特征矩阵本身进行运算,它的大小通常是2x2、3x3、4x4等,其中2x2使用频率最高。然后将池化核在卷积得到的输出特征图中进行池化操作,需要注意的是,池化的过程中也有Padding方式以及步长的概念
- 【人工智能之深度学习】6. 卷积核工作原理:从边缘检测到特征抽象的逐层演进(附可视化工具与行业实战代码)
AI_DL_CODE
人工智能深度学习卷积核特征提取卷积神经网络边缘检测特征可视化
摘要:卷积核是卷积神经网络(CNN)的核心组件,其通过局部感受野与参数共享机制实现高效特征提取。本文从数学本质出发,揭示卷积操作的空域-频域对偶性:空域卷积等价于频域乘积(F{f∗g}=F{f}⋅F{g}F\{f*g\}=F\{f\}⋅F\{g\}F{f∗g}=F{f}⋅F{g}),解释边缘检测核(Sobel、Laplacian)的频域响应特性。通过特征可视化实验表明,CNN特征呈现逐层抽象规律:
- 回归损失函数2 : HUber loss,Log Cosh Loss,以及 Quantile Loss
均方误差(MeanSquareError,MSE)和平均绝对误差(MeanAbsoluteError,MAE)是回归中最常用的两个损失函数,但是其各有优缺点。为了避免MAE和MSE各自的优缺点,在FasterR-CNN和SSD中使用SmoothL1SmoothL1损失函数,当误差在[−1,1][−1,1]之间时,SmoothL1SmoothL1损失函数近似于MSE,能够快速的收敛;在其他的区间则近
- 基于深度学习的目标检测:从基础到实践
Blossom.118
机器学习与人工智能深度学习目标检测人工智能音视频语音识别计算机视觉机器学习
前言目标检测(ObjectDetection)是计算机视觉领域中的一个核心任务,其目标是在图像中定位和识别多个对象的类别和位置。近年来,深度学习技术,尤其是卷积神经网络(CNN),在目标检测任务中取得了显著进展。本文将详细介绍如何使用深度学习技术构建目标检测模型,从理论基础到代码实现,带你一步步掌握目标检测的完整流程。一、目标检测的基本概念(一)目标检测的定义目标检测是指在图像中识别和定位多个对象
- DETR革命:目标检测的Transformer时代
加油吧zkf
目标检测YOLOpython开发语言人工智能图像处理
《DETR从0到1:目标检测Transformer的崛起》为什么会有DETR?在深度学习目标检测发展史上,2014~2019年几乎被基于卷积神经网络(CNN)的检测器统治:两阶段:FasterR-CNN、MaskR-CNN单阶段:YOLO、SSD、RetinaNet这些检测器虽然效果强大,但背后依赖:✅Anchor(先验框)✅NMS(非极大值抑制)✅特征金字塔、手工设计问题:结构复杂、调参困难、不
- 神经网络项目--基于FPGA的AI简易项目(1-9图片数字识别)
霖12
深度学习pytorch神经网络fpga开发人工智能机器学习
1.训练MNIST模型importtorch#导入pytorch核心库importtorch.nnasnn#神经网络模块,如卷积层importtorch.optimasoptim#优化器fromtorchvisionimportdatasets,transforms#数据集与图像预处理工具#定义CNN模型classSimpleCNN(nn.Module):#PyTorch库中所有神经网络的“基础模
- 【深度学习-Day 36】CNN的开山鼻祖:从LeNet-5到AlexNet的架构演进之路
吴师兄大模型
深度学习入门到精通pythonpytorch开发语言人工智能CNN深度学习大模型
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- 生成式人工智能实战 | 像素卷积神经网络(PixelCNN)
盼小辉丶
生成式人工智能实战150讲深度学习生成模型aigc
生成式人工智能实战|像素卷积神经网络0.前言1.PixelCNN工作原理1.1掩码卷积层1.2残差块2.PixelCNN分析3.使用混合分布改进PixelCNN3.1模型构建3.2模型训练0.前言像素卷积神经网络(PixelConvolutionalNeuralNetwork,PixelCNN)是于2016年提出的一种图像生成模型,其根据前面的像素预测下一个像素的概率来逐像素地生成图像,模型可以通
- 基于cnn和resnet和mobilenet对比实现驾驶员分心检测
深度学习乐园
cnn人工智能神经网络
演示效果及获取项目源码点击文末名片本项目旨在通过深度学习技术,结合卷积神经网络(CNN)模型、ResNet模型和MobileNet模型,实现对驾驶员分心行为的自动检测。我们通过训练这些模型来识别不同的驾驶员分心行为,包括如发短信、通话、喝水等行为。使用的数据集包含驾驶员行为的图片,并且针对每个行为标注了相应的标签(例如"正常驾驶"、"右手发短信"等)。MobileNetV2是Google于2018
- 基于蜣螂算法优化多头注意力机制的卷积神经网络结合双向长短记忆神经网络实现温度预测DBO-CNN-biLSTM-Multihead-Attention附matlab代码
matlab科研助手
神经网络算法cnn
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。更多Matlab完整代码及仿真定制内容点击智能优化算法神经网络预测雷达通信无线传感器电力系统信号处理图像处理路径规划元胞自动机无人机物理应用机器学习内容介绍温度预测在气象学、农业、能源等领域具有重要的应用价值。随着大数据和人工智能技术的快速发
- Transformer:自注意力驱动的神经网络革命引擎
大千AI助手
人工智能Python#OTHERtransformer神经网络深度学习google人工智能机器学习大模型
本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!从语言理解到多模态智能的通用架构基石⚙️一、核心定义与历史意义Transformer是由Google团队在2017年论文《AttentionIsAllYouNeed》中提出的深度学习架构,其颠覆性创新在于:完全摒弃RNN/CNN:仅依赖自注意力机制(S
- 渣土车识别漏检率高?陌讯算法实测降 90%
2501_92487936
目标跟踪人工智能计算机视觉目标检测算法智慧城市
在城市建筑垃圾运输管理中,渣土车的合规性监测一直是行业痛点。传统视觉算法在复杂工况下常常出现误判——阴雨天车牌识别模糊、夜间车灯眩光导致车型误分类、不同品牌渣土车混检时准确率骤降。某市政管理局的统计显示,采用传统方案时,日均漏检率高达23%,由此引发的违规倾倒投诉占比超60%。技术解析:从单模态到多特征融合的突破传统渣土车识别多依赖单一目标检测模型(如FasterR-CNN),其核心缺陷在于:特征
- 复杂场景检测老翻车?陌讯算法实测提升 40%
2501_92453489
算法视觉计算机视觉视觉检测
在工业质检、安防监控等计算机视觉落地场景中,工程师常面临棘手问题:传统算法在光照突变、目标遮挡等复杂环境下,漏检率高达20%以上,泛化能力不足成为项目落地的最大阻碍。而陌讯AI视觉算法通过架构创新,正在重新定义复杂场景下的检测精度标准。技术解析:从单模态到多模态的跨越传统目标检测模型多依赖单一RGB图像输入,在特征提取阶段容易受环境干扰。以经典的FasterR-CNN为例,其区域提议网络(RPN)
- 深度学习——CNN(3)
飘涯
前言:前面介绍了最基本的Lenet,下面介绍几种其他的网络结构CNN-AlexNet网络结构如下图:从图中可以看出,采用双gpu训练增加LRN归一化层:本质上,这个层也是为了防止激活函数的饱和的。采用dropout防止过拟合基于AlexNet进行微调,诞生了ZF-netCNN-GoogleNetGoogLeNet借鉴了NIN的特性,在原先的卷积过程中附加了11的卷积核加上ReLU激活。这不仅仅提升
- PyTorch & TensorFlow速成复习:从基础语法到模型部署实战(附FPGA移植衔接)
阿牛的药铺
算法移植部署pytorchtensorflowfpga开发
PyTorch&TensorFlow速成复习:从基础语法到模型部署实战(附FPGA移植衔接)引言:为什么算法移植工程师必须掌握框架基础?针对光学类产品算法FPGA移植岗位需求(如可见光/红外图像处理),深度学习框架是算法落地的"桥梁"——既要用PyTorch/TensorFlow验证算法可行性,又要将训练好的模型(如CNN、目标检测)转换为FPGA可部署的格式(ONNX、TFLite)。本文采用"
- 盲超分的核心概念
小冷爱读书
数学建模盲超分超分重建
一、盲超分的本质与数学建模1.退化过程的数学表达低分辨率图像(LR)可看作高分辨率图像(HR)经过退化模型后的结果::观测到的低分辨率图像:待恢复的高分辨率图像:模糊核(BlurKernel)⊗:卷积操作↓:下采样(步长为):加性噪声(如高斯噪声、泊松噪声等)盲超分的核心问题:在未知、、的情况下,从估计。2.为什么传统超分方法会失效?传统方法(如SRCNN、EDSR)假设退化是固定的(如双三次下采
- 目标检测中的NMS算法详解
好的,我们来详细解释一下目标检测中非极大值抑制(Non-MaximumSuppression,NMS)的相关概念和计算过程。1.为什么需要NMS?问题:目标检测模型(如FasterR-CNN,YOLO,SSD等)在推理时,对于同一个目标物体,通常会预测出多个重叠的、不同置信度(confidencescore)的候选边界框(BoundingBoxes)。直接输出所有这些框会导致:结果冗余:同一个物体
- CNN 猫狗识别:从理论到实战的深度解析
爱熬夜的小古
cnn深度学习人工智能
在计算机视觉领域,卷积神经网络(ConvolutionalNeuralNetwork,CNN)凭借其强大的特征提取和模式识别能力,成为图像分类任务的主流技术。猫狗识别作为经典的图像分类问题,不仅能帮助我们理解CNN的工作原理,还能为实际应用提供技术支持。本文将深入探讨CNN在猫狗识别中的应用,从理论基础到实战代码,带你全面掌握这项技术。一、CNN基础理论概述(一)CNN的核心组件卷积层:是CNN的
- 目前主流图像分类模型的详细对比分析
@comefly
闲聊linux运维服务器
以下是目前主流图像分类模型的详细对比分析,结合性能、架构特点及应用场景进行整理:一、主流模型架构分类与定量对比模型名称架构类型核心特点ImageNetTop-1准确率参数量(百万)计算效率典型应用场景ResNetCNN残差连接解决梯度消失,支持超深网络(如ResNet-152)76.1%25.6中等通用分类、目标检测ViTTransformer将图像分割为patches,用标准Transforme
- python——struct模块
稚与
Pythonpython数据分析
文章目录structmodule简介常用函数常见format解析MINSTstructmodule最近在学CNN,想找一个合适的数据集,就想到了MINST。但是官网中挂出的文件是train-images-idx3-ubyte.gz等解压后为idx3-ubyte后缀文件。后缀名中idx3表示3维的数据。简介struct模块用于二进制和常用数据类型之间的互相转化,此模块中大部分函数接受一个实现了Buf
- 街道垃圾识别难?陌讯视觉算法实测准确率突破95%
2501_92487900
算法边缘计算目标检测视觉检测计算机视觉
开篇痛点:街道垃圾识别的技术挑战在智慧城市和环保监管场景中,街道垃圾的实时检测一直是个难题。传统视觉算法(如YOLOv5、FasterR-CNN)在复杂街道场景下表现不佳,主要面临以下问题:光照干扰:早晚光线变化导致误检(如阴影被识别为垃圾)小目标漏检:饮料瓶、烟头等小物体在640x640输入下仅占10x10像素遮挡问题:垃圾桶周边堆积物造成特征混淆某环保科技公司实测数据显示,开源模型在真实场景中
- FasterRCNN源码解析(一)-——跑通代码_霹雳巴拉wz的代码看不懂
2401_84140023
2024年程序员学习运维linux面试
为了做好运维面试路上的助攻手,特整理了上百道【运维技术栈面试题集锦】,让你面试不慌心不跳,高薪offer怀里抱!这次整理的面试题,小到shell、MySQL,大到K8s等云原生技术栈,不仅适合运维新人入行面试需要,还适用于想提升进阶跳槽加薪的运维朋友。本份面试集锦涵盖了174道运维工程师面试题128道k8s面试题108道shell脚本面试题200道Linux面试题51道docker面试题35道Je
- 【零基础学AI】第31讲:目标检测 - YOLO算法
1989
0基础学AI人工智能目标检测YOLOrnnlstmtensorflow
本节课你将学到YOLO算法的核心思想和工作原理如何使用YOLO进行物体检测构建一个简单的物体检测系统开始之前环境要求Python3.8+需要安装的包:opencv-python,numpy,matplotlib硬件要求:推荐使用GPU(非必须)前置知识基本Python编程能力了解卷积神经网络(CNN)的基本概念(第24讲内容)核心概念什么是目标检测?目标检测就像教计算机"看"图片中的物体。它不仅要
- 中药细粒度图像分类
小lo想吃棒棒糖
分类数据挖掘人工智能
在细粒度图像分类(FGVC)领域,BilinearCNN(BCNN)模型因其能够捕捉图像中的局部特征交互而受到广泛关注。该模型通过双线性池化操作将两个不同CNN提取的特征进行外积运算,从而获得更加丰富的特征表示,这对于区分外观相似但属于不同子类别的物体尤其有效。然而,BCNN通常计算成本较高,限制了其在移动设备或资源受限环境下的应用。为了实现轻量化并保持高精度的细粒度分类,可以考虑将MobileN
- 【第三章:神经网络原理详解与Pytorch入门】02.深度学习框架PyTorch入门-(4)Pytorch实战
IT古董
人工智能课程深度学习神经网络pytorch
第三章:神经网络原理详解与Pytorch入门第二部分:深度学习框架PyTorch入门第四节:Pytorch模型构建内容:如何搭建复杂网络以及如何修改模型与保存一、构建复杂神经网络结构在PyTorch中,构建复杂模型通常通过继承nn.Module类,分模块组织层与前向传播逻辑。示例:自定义一个卷积神经网络(CNN)importtorch.nnasnnimporttorch.nn.functional
- Transformer、BERT等模型原理与应用案例
程序猿全栈の董(董翔)
人工智能热门技术领域transformerbert深度学习
Transformer、BERT等模型原理与应用案例Transformer模型原理Transformer是一种基于注意力机制的深度学习模型架构,由Vaswani等人在2017年的论文"AttentionIsAllYouNeed"中提出。与传统的循环神经网络(RNN)和卷积神经网络(CNN)不同,Transformer完全依赖自注意力机制来处理输入序列的全局依赖关系。核心组件多头自注意力机制(Mul
- 大模型卷积神经网络(CNN)的架构原理
hao_wujing
cnn架构人工智能
大家读完觉得有帮助记得关注和点赞!!!一、卷积神经网络(CNN)的核心原理与架构CNN是一种专为结构化数据(如图像、文本)设计的深度学习模型,其核心在于层次化特征提取与参数高效共享,使其成为大模型中视觉和多模态任务的基础组件。1.核心结构分层解析输入层接收预处理后的数据(如图像去均值、归一化),为后续卷积操作提供标准化输入39。卷积层(核心)局部感知:每个卷积核(如3×3)仅处理输入数据的局部区域
- java的(PO,VO,TO,BO,DAO,POJO)
Cb123456
VOTOBOPOJODAO
转:
http://www.cnblogs.com/yxnchinahlj/archive/2012/02/24/2366110.html
-------------------------------------------------------------------
O/R Mapping 是 Object Relational Mapping(对象关系映
- spring ioc原理(看完后大家可以自己写一个spring)
aijuans
spring
最近,买了本Spring入门书:spring In Action 。大致浏览了下感觉还不错。就是入门了点。Manning的书还是不错的,我虽然不像哪些只看Manning书的人那样专注于Manning,但怀着崇敬 的心情和激情通览了一遍。又一次接受了IOC 、DI、AOP等Spring核心概念。 先就IOC和DI谈一点我的看法。IO
- MyEclipse 2014中Customize Persperctive设置无效的解决方法
Kai_Ge
MyEclipse2014
高高兴兴下载个MyEclipse2014,发现工具条上多了个手机开发的按钮,心生不爽就想弄掉他!
结果发现Customize Persperctive失效!!
有说更新下就好了,可是国内Myeclipse访问不了,何谈更新...
so~这里提供了更新后的一下jar包,给大家使用!
1、将9个jar复制到myeclipse安装目录\plugins中
2、删除和这9个jar同包名但是版本号较
- SpringMvc上传
120153216
springMVC
@RequestMapping(value = WebUrlConstant.UPLOADFILE)
@ResponseBody
public Map<String, Object> uploadFile(HttpServletRequest request,HttpServletResponse httpresponse) {
try {
//
- Javascript----HTML DOM 事件
何必如此
JavaScripthtmlWeb
HTML DOM 事件允许Javascript在HTML文档元素中注册不同事件处理程序。
事件通常与函数结合使用,函数不会在事件发生前被执行!
注:DOM: 指明使用的 DOM 属性级别。
1.鼠标事件
属性  
- 动态绑定和删除onclick事件
357029540
JavaScriptjquery
因为对JQUERY和JS的动态绑定事件的不熟悉,今天花了好久的时间才把动态绑定和删除onclick事件搞定!现在分享下我的过程。
在我的查询页面,我将我的onclick事件绑定到了tr标签上同时传入当前行(this值)参数,这样可以在点击行上的任意地方时可以选中checkbox,但是在我的某一列上也有一个onclick事件是用于下载附件的,当
- HttpClient|HttpClient请求详解
7454103
apache应用服务器网络协议网络应用Security
HttpClient 是 Apache Jakarta Common 下的子项目,可以用来提供高效的、最新的、功能丰富的支持 HTTP 协议的客户端编程工具包,并且它支持 HTTP 协议最新的版本和建议。本文首先介绍 HTTPClient,然后根据作者实际工作经验给出了一些常见问题的解决方法。HTTP 协议可能是现在 Internet 上使用得最多、最重要的协议了,越来越多的 Java 应用程序需
- 递归 逐层统计树形结构数据
darkranger
数据结构
将集合递归获取树形结构:
/**
*
* 递归获取数据
* @param alist:所有分类
* @param subjname:对应统计的项目名称
* @param pk:对应项目主键
* @param reportList: 最后统计的结果集
* @param count:项目级别
*/
public void getReportVO(Arr
- 访问WEB-INF下使用frameset标签页面出错的原因
aijuans
struts2
<frameset rows="61,*,24" cols="*" framespacing="0" frameborder="no" border="0">
- MAVEN常用命令
avords
Maven库:
http://repo2.maven.org/maven2/
Maven依赖查询:
http://mvnrepository.com/
Maven常用命令: 1. 创建Maven的普通java项目: mvn archetype:create -DgroupId=packageName 
- PHP如果自带一个小型的web服务器就好了
houxinyou
apache应用服务器WebPHP脚本
最近单位用PHP做网站,感觉PHP挺好的,不过有一些地方不太习惯,比如,环境搭建。PHP本身就是一个网站后台脚本,但用PHP做程序时还要下载apache,配置起来也不太很方便,虽然有好多配置好的apache+php+mysq的环境,但用起来总是心里不太舒服,因为我要的只是一个开发环境,如果是真实的运行环境,下个apahe也无所谓,但只是一个开发环境,总有一种杀鸡用牛刀的感觉。如果php自己的程序中
- NoSQL数据库之Redis数据库管理(list类型)
bijian1013
redis数据库NoSQL
3.list类型及操作
List是一个链表结构,主要功能是push、pop、获取一个范围的所有值等等,操作key理解为链表的名字。Redis的list类型其实就是一个每个子元素都是string类型的双向链表。我们可以通过push、pop操作从链表的头部或者尾部添加删除元素,这样list既可以作为栈,又可以作为队列。
&nbs
- 谁在用Hadoop?
bingyingao
hadoop数据挖掘公司应用场景
Hadoop技术的应用已经十分广泛了,而我是最近才开始对它有所了解,它在大数据领域的出色表现也让我产生了兴趣。浏览了他的官网,其中有一个页面专门介绍目前世界上有哪些公司在用Hadoop,这些公司涵盖各行各业,不乏一些大公司如alibaba,ebay,amazon,google,facebook,adobe等,主要用于日志分析、数据挖掘、机器学习、构建索引、业务报表等场景,这更加激发了学习它的热情。
- 【Spark七十六】Spark计算结果存到MySQL
bit1129
mysql
package spark.examples.db
import java.sql.{PreparedStatement, Connection, DriverManager}
import com.mysql.jdbc.Driver
import org.apache.spark.{SparkContext, SparkConf}
object SparkMySQLInteg
- Scala: JVM上的函数编程
bookjovi
scalaerlanghaskell
说Scala是JVM上的函数编程一点也不为过,Scala把面向对象和函数型编程这两种主流编程范式结合了起来,对于熟悉各种编程范式的人而言Scala并没有带来太多革新的编程思想,scala主要的有点在于Java庞大的package优势,这样也就弥补了JVM平台上函数型编程的缺失,MS家.net上已经有了F#,JVM怎么能不跟上呢?
对本人而言
- jar打成exe
bro_feng
java jar exe
今天要把jar包打成exe,jsmooth和exe4j都用了。
遇见几个问题。记录一下。
两个软件都很好使,网上都有图片教程,都挺不错。
首先肯定是要用自己的jre的,不然不能通用,其次别忘了把需要的lib放到classPath中。
困扰我很久的一个问题是,我自己打包成功后,在一个同事的没有装jdk的电脑上运行,就是不行,报错jvm.dll为无效的windows映像,如截图
最后发现
- 读《研磨设计模式》-代码笔记-策略模式-Strategy
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
策略模式定义了一系列的算法,并将每一个算法封装起来,而且使它们还可以相互替换。策略模式让算法独立于使用它的客户而独立变化
简单理解:
1、将不同的策略提炼出一个共同接口。这是容易的,因为不同的策略,只是算法不同,需要传递的参数
- cmd命令值cvfM命令
chenyu19891124
cmd
cmd命令还真是强大啊。今天发现jar -cvfM aa.rar @aaalist 就这行命令可以根据aaalist取出相应的文件
例如:
在d:\workspace\prpall\test.java 有这样一个文件,现在想要将这个文件打成一个包。运行如下命令即可比如在d:\wor
- OpenJWeb(1.8) Java Web应用快速开发平台
comsci
java框架Web项目管理企业应用
OpenJWeb(1.8) Java Web应用快速开发平台的作者是我们技术联盟的成员,他最近推出了新版本的快速应用开发平台 OpenJWeb(1.8),我帮他做做宣传
OpenJWeb快速开发平台以快速开发为核心,整合先进的java 开源框架,本着自主开发+应用集成相结合的原则,旨在为政府、企事业单位、软件公司等平台用户提供一个架构透
- Python 报错:IndentationError: unexpected indent
daizj
pythontab空格缩进
IndentationError: unexpected indent 是缩进的问题,也有可能是tab和空格混用啦
Python开发者有意让违反了缩进规则的程序不能通过编译,以此来强制程序员养成良好的编程习惯。并且在Python语言里,缩进而非花括号或者某种关键字,被用于表示语句块的开始和退出。增加缩进表示语句块的开
- HttpClient 超时设置
dongwei_6688
httpclient
HttpClient中的超时设置包含两个部分:
1. 建立连接超时,是指在httpclient客户端和服务器端建立连接过程中允许的最大等待时间
2. 读取数据超时,是指在建立连接后,等待读取服务器端的响应数据时允许的最大等待时间
在HttpClient 4.x中如下设置:
HttpClient httpclient = new DefaultHttpC
- 小鱼与波浪
dcj3sjt126com
一条小鱼游出水面看蓝天,偶然间遇到了波浪。 小鱼便与波浪在海面上游戏,随着波浪上下起伏、汹涌前进。 小鱼在波浪里兴奋得大叫:“你每天都过着这么刺激的生活吗?简直太棒了。” 波浪说:“岂只每天过这样的生活,几乎每一刻都这么刺激!还有更刺激的,要有潮汐变化,或者狂风暴雨,那才是兴奋得心脏都会跳出来。” 小鱼说:“真希望我也能变成一个波浪,每天随着风雨、潮汐流动,不知道有多么好!” 很快,小鱼
- Error Code: 1175 You are using safe update mode and you tried to update a table
dcj3sjt126com
mysql
快速高效用:SET SQL_SAFE_UPDATES = 0;下面的就不要看了!
今日用MySQL Workbench进行数据库的管理更新时,执行一个更新的语句碰到以下错误提示:
Error Code: 1175
You are using safe update mode and you tried to update a table without a WHERE that
- 枚举类型详细介绍及方法定义
gaomysion
enumjavaee
转发
http://developer.51cto.com/art/201107/275031.htm
枚举其实就是一种类型,跟int, char 这种差不多,就是定义变量时限制输入的,你只能够赋enum里面规定的值。建议大家可以看看,这两篇文章,《java枚举类型入门》和《C++的中的结构体和枚举》,供大家参考。
枚举类型是JDK5.0的新特征。Sun引进了一个全新的关键字enum
- Merge Sorted Array
hcx2013
array
Given two sorted integer arrays nums1 and nums2, merge nums2 into nums1 as one sorted array.
Note:You may assume that nums1 has enough space (size that is
- Expression Language 3.0新特性
jinnianshilongnian
el 3.0
Expression Language 3.0表达式语言规范最终版从2013-4-29发布到现在已经非常久的时间了;目前如Tomcat 8、Jetty 9、GlasshFish 4已经支持EL 3.0。新特性包括:如字符串拼接操作符、赋值、分号操作符、对象方法调用、Lambda表达式、静态字段/方法调用、构造器调用、Java8集合操作。目前Glassfish 4/Jetty实现最好,对大多数新特性
- 超越算法来看待个性化推荐
liyonghui160com
超越算法来看待个性化推荐
一提到个性化推荐,大家一般会想到协同过滤、文本相似等推荐算法,或是更高阶的模型推荐算法,百度的张栋说过,推荐40%取决于UI、30%取决于数据、20%取决于背景知识,虽然本人不是很认同这种比例,但推荐系统中,推荐算法起的作用起的作用是非常有限的。
就像任何
- 写给Javascript初学者的小小建议
pda158
JavaScript
一般初学JavaScript的时候最头痛的就是浏览器兼容问题。在Firefox下面好好的代码放到IE就不能显示了,又或者是在IE能正常显示的代码在firefox又报错了。 如果你正初学JavaScript并有着一样的处境的话建议你:初学JavaScript的时候无视DOM和BOM的兼容性,将更多的时间花在 了解语言本身(ECMAScript)。只在特定浏览器编写代码(Chrome/Fi
- Java 枚举
ShihLei
javaenum枚举
注:文章内容大量借鉴使用网上的资料,可惜没有记录参考地址,只能再传对作者说声抱歉并表示感谢!
一 基础 1)语法
枚举类型只能有私有构造器(这样做可以保证客户代码没有办法新建一个enum的实例)
枚举实例必须最先定义
2)特性
&nb
- Java SE 6 HotSpot虚拟机的垃圾回收机制
uuhorse
javaHotSpotGC垃圾回收VM
官方资料,关于Java SE 6 HotSpot虚拟机的garbage Collection,非常全,英文。
http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html
Java SE 6 HotSpot[tm] Virtual Machine Garbage Collection Tuning
&